Volume 20, Issue 2 (February 2020)                   Modares Mechanical Engineering 2020, 20(2): 321-328 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saberi A, Mahpeykar M, Teymourtash A. Experimental Study and Numerical Simulation of the Circular Hydraulic Jump on the Concave Target Plate. Modares Mechanical Engineering 2020; 20 (2) :321-328
URL: http://mme.modares.ac.ir/article-15-29639-en.html
1- Mechanical Engineering Department, Faculty Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Faculty Engineering, Ferdowsi University of Mashhad, Mashhad, Iran , mahpeymr@um.ac.irl
Abstract:   (3797 Views)
A circular hydraulic jump is a phenomenon that is shaped when a vertical fluid jet impinges on a horizontal plate, at a certain radial distance of the plate center (hydraulic jump radius). Most of the experimental and numerical studies have analyzed the circular hydraulic jump on the flat target plate and the effect of the concave plate has not been investigated yet. Therefore, in this study, using the experimental investigation and numerical simulation using Fluent software, the effect of the concave target plate on the size and shape of the hydraulic jump is investigated for the first time. In order to simulate the circular hydraulic jump, the volume of fluid method (VOF) has been applied. The continuous surface force model (CSF) has been used to investigating the surface tension. The geometric reconstruction has been used for determining the interface of the two fluids.  According to the experimental results, the hydraulic jump radius is a function of the impingement jet radius, the concave target plate radius, and the volumetric flow rate. Also, based on the experimental observation, by increasing the radius of the concave target plate, the shape of these jumps change from the circular to the polygonal hydraulic jump.
Full-Text [PDF 999 kb]   (1718 Downloads)    
Article Type: Original Research | Subject: Experimental Fluid Mechanics
Received: 2019/01/21 | Accepted: 2019/05/19 | Published: 2020/02/1

References
1. Karniadakis GE, Beskok A, Aluru N. Microflows and nanoflows: Fundamentals and Simulation. New York: Springer; 2005. [Link]
2. Naraghi MN, Moallemi MK, Naraghi MHN, Kumar S. Experimental modeling of circular hydraulic jump by the impingement of a water column on a horizontal disk. Journal of Fluids Engineering. 1999;121(1):86-92. [Link] [DOI:10.1115/1.2822017]
3. Rao A, Arakeri JH. Wave structure in the radial film flow with a circular hydraulic jump. Experiments in Fluids. 2001;31(5):542-549. [Link] [DOI:10.1007/s003480100328]
4. Birkhoff G, Zarantonello EH. Jets, wakes and cavities. 1th Edition. Cambridge: Academic Press; 1957. [Link]
5. Watson EJ. The radial spread of a liquid jet over a horizontal plane. Journal of Fluid Mechanics. 1964;20(3):481-499. [Link] [DOI:10.1017/S0022112064001367]
6. Stevens J, Webb BW. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet. Journal of Heat Transfer. 1991;113(1):71-78. [Link] [DOI:10.1115/1.2910554]
7. Baonga JB, Louahlia-Gualous H, Imbert M. Experimental study of the hydrodynamic and heat transfer of free liquid jet impinging a flat circular heated disk. Applied Thermal Engineering. 2006;26(11-12):1125-1138. [Link] [DOI:10.1016/j.applthermaleng.2005.11.001]
8. Duchesne A, Lebon L, Limat L. Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection. Europhysics Letters. 2014;107(5):54002. [Link] [DOI:10.1209/0295-5075/107/54002]
9. Avedisian CT, Zhao Z. The circular hydraulic jump in low gravity. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences. 2000;456(2001):2127-2151. [Link] [DOI:10.1098/rspa.2000.0606]
10. Gradeck M, Kouachi A, Dani A, Arnoult D, Borean JL. Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface. Experiment Thermal and Fluid Science. 2006;30(3):193-201. [Link] [DOI:10.1016/j.expthermflusci.2005.05.006]
11. Kate RP, Das PK, Chakraborty S. An experimental investigation on the interaction of hydraulic jumps formed by two normal impinging circular liquid jets. Journal of Fluid Mechanics. 2007;590:355-380. [Link] [DOI:10.1017/S0022112007008063]
12. Kate RP, Das PK, Chakraborty S. Investigation on non-circular hydraulic jumps formed due to obliquely impinging circular liquid jets. Experimental Thermal and Fluid Science. 2008;32(8):1429-1439. [Link] [DOI:10.1016/j.expthermflusci.2008.03.001]
13. Gumkowski S. Modeling and experimental investigation of the hydraulic jumps in liquid film formed by an impinging two-phase air-water jet. Heat Transfer Engineering. 2008;29(9):816-821. [Link] [DOI:10.1080/01457630802053876]
14. Mikielewicz J, Mikielewicz D. A simple dissipation model of circular hydraulic jump. International Journal of Heat and Mass Transfer. 2009;52(1-2):17-21. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.06.007]
15. Teamah MA, Ibrahim MK, Khairat Dawood MM, Aleem EA. Experimental investigation for hydrodynamic flow due to obliquely free circular water jet impinging on horizontal flat plate. European Journal of Scientific Research. 2012;83(1):60-75. [Link]
16. Johnson M, Maynes D, Crockett J. Experimental characterization of hydraulic jump caused by jet impingement on micro-patterned surfaces exhibiting ribs and cavities. Experimental Thermal and Fluid Science. 2014;58:216-223. [Link] [DOI:10.1016/j.expthermflusci.2014.07.001]
17. Choo K, Kim SJ. The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement. Experimental Thermal and Fluid Science. 2016;72:12-17. [Link] [DOI:10.1016/j.expthermflusci.2015.10.033]
18. Friedrich BK, Ford TD, Glaspell AW, Choo K. Experimental study of the hydrodynamic and heat transfer of air-assistant circular water jet impinging a flat circular disk. International Journal of Heat and Mass Transfer. 2017;106:804-809. [Link] [DOI:10.1016/j.ijheatmasstransfer.2016.09.102]
19. Saberi A, Mahpeykar MR, Teymourtash AR. Experimental measurement of radius of circular hydraulic jumps: Effect of radius of convex target plate. Flow Measurement and Instrumentation. 2019;65:274-279. [Link] [DOI:10.1016/j.flowmeasinst.2019.01.011]
20. Teymouratsh AR, Mokhlesi M. Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps. Journal of Fluid Mechanics. 2015;762:344-360. [Link] [DOI:10.1017/jfm.2014.646]
21. Soukhtanlou E, Teymourtash AR, Mahpeykar MR. Proposal of experimental relations for determining the number of sides of polygonal hydraulic jumps. Modares Mechanical Engineering. 2018;18(1):273-280. [Persian] [Link]
22. Bush JWM, Aristoff JM. The influence of surface tension on the circular hydraulic jump. Journal of Fluid Mechanics. 2003;489:229-238. [Link] [DOI:10.1017/S0022112003005159]
23. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics. 1992;100(2):335-354. [Link] [DOI:10.1016/0021-9991(92)90240-Y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.