Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 241-250 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinalipoor S, Ami Ahmadi H, Ebadi A, Abdollahi Gol M. Experimental Investigation of Bubble-Droplet Coalescence Phenomenon in Water. Modares Mechanical Engineering 2020; 20 (1) :241-250
URL: http://mme.modares.ac.ir/article-15-30424-en.html
1- Energy, Water & Environment Research Lab, Mechanical Engineering School, Iran University of Science & Technology, Tehran, Iran , alipour@iust.ac.ir
2- Energy, Water & Environment Research Lab, Mechanical Engineering School, Iran University of Science & Technology, Tehran, Iran
Abstract:   (3006 Views)
Nowadays, the interaction of oil droplets with gas bubbles plays an important role in many industrial, environmental and biological processes. Therefore, in this paper, the outcome of a collision between a silicon oil droplet and an air bubble in water has studied in order to identify the effective parameters in this process. For this purpose, an especial setup was built and four series of experiments in both dynamic (in which the relative velocity of collision is equal to the bubble velocity due to the Buoyancy force) and static conditions were carried out. The results of these experiments were presented and discussed in the form of several tables and pictures. In these experiments, a high-speed camera and image processing were used to gain a better understanding about bubble-drop coalescence qualitatively, and to obtain some quantitative information such as contact time, velocity, and kinetic and interfacial energies of bubbles and drops during the impact. The results of this study show that in addition to the spreading coefficient, the kinetic energy of bubble/droplet in the collision and their contact time, are also determinative parameters in the determination of the outcome of a collision. In the dynamic and static states, the effect of kinetic energy and contact time are more effective, respectively.
Full-Text [PDF 994 kb]   (2067 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2019/02/20 | Accepted: 2019/05/7 | Published: 2020/01/20

References
1. 1- Farajzadeh R, Andrianov A, Krastev R, Hirasaki GJ, Rossen WR. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science. 2012;183-184:1-13. [Link] [DOI:10.1016/j.cis.2012.07.002]
2. Eftekhardadkhah M, Aanesen SV, Rabe K, Øye G. Oil removal from produced water during laboratory-and pilot-scale gas flotation: The influence of interfacial adsorption and induction times. Energy & Fuels. 2015;29(11):7734-7740. [Link] [DOI:10.1021/acs.energyfuels.5b02110]
3. Eftekhardadkhah M, Øye G. Induction and coverage times for crude oil droplets spreading on air bubbles. Environmental Science & Technology. 2013;47(24):14154-14160. [Link] [DOI:10.1021/es403574g]
4. Grattoni C, Moosai R, Dawe RA. Photographic observations showing spreading and non-spreading of oil on gas bubbles of relevance to gas flotation for oily wastewater cleanup. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003;214(1-3):151-155. [Link] [DOI:10.1016/S0927-7757(02)00385-0]
5. Hayatdavoudi A, Howdeshell M, Godeaux E, Pednekar N, Dhumal V. Performance analysis of a novel compact flotation unit. Journal of Energy Resources Technology. 2011;133(1):013101. [Link] [DOI:10.1115/1.4003497]
6. Won JY, Krägel J, Gochev G, Ulaganathan V, Javadi A, Makievski AV, et al. Bubble-bubble interaction in aqueous β-Lactoglobulin solutions. Food Hydrocolloids. 2014;34:15-21. [Link] [DOI:10.1016/j.foodhyd.2013.07.027]
7. Won JY, Krägel J, Makievski AV, Javadi A, Gochev G, Loglio G, et al. Drop and bubble micro manipulator (DBMM)-a unique tool for mimicking processes in foams and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:807-814. [Link] [DOI:10.1016/j.colsurfa.2013.04.027]
8. Dudek M, Øye G. Microfluidic study on the attachment of crude oil droplets to gas bubbles. Energy & Fuels. 2018;32(10):10513-10521. [Link] [DOI:10.1021/acs.energyfuels.8b02236]
9. Wang K, Qin K, Lu Y, Luo G, Wang T. Gas/liquid/liquid three-phase flow patterns and bubble/droplet size laws in a double T-junction microchannel. AIChE Journal. 2015;61(5):1722-1734. [Link] [DOI:10.1002/aic.14758]
10. Ata S. Coalescence of bubbles covered by particles. Langmuir. 2008;24(12):6085-6091. [Link] [DOI:10.1021/la800466x]
11. Ata S, Pugh RJ, Jameson GJ. The influence of interfacial ageing and temperature on the coalescence of oil droplets in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;374(1-3):96-101. [Link] [DOI:10.1016/j.colsurfa.2010.11.012]
12. Leal LG. Flow induced coalescence of drops in a viscous fluid. Physics of Fluids. 2004;16(6):1833-1851. [Link] [DOI:10.1063/1.1701892]
13. Janssen PJA, Anderson PD. Modeling film drainage and coalescence of drops in a viscous fluid. Macromolecular Materials and Engineering. 2011;296(3-4):238-248. [Link] [DOI:10.1002/mame.201000375]
14. Frostad JM, Collins MC, Leal LG. Direct measurement of the interaction of model food emulsion droplets adhering by arrested coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;441:459-465. [Link] [DOI:10.1016/j.colsurfa.2013.09.028]
15. Chesters AK, Hofman G. Bubble coalescence in pure liquids. In: Van Wijngaarden L, editor. Mechanics and physics of bubbles in liquids. Dordrecht: Springer; 1982. pp. 353-361. [Link] [DOI:10.1007/978-94-009-7532-3_33]
16. Chesters AK. The modelling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Chemical Engineering Research and Design. 1991;69(A4):259-270. [Link]
17. Chesters AK, Bazhlekov IB. Effect of insoluble surfactants on drainage and rupture of a film between drops interacting under a constant force. Journal of Colloid and Interface Science. 2000;230(2):229-243. [Link] [DOI:10.1006/jcis.2000.7074]
18. Howarth WJ. Coalescence of drops in a turbulent flow field. Chemical Engineering Science. 1964;19(1):33-38. [Link] [DOI:10.1016/0009-2509(64)85003-X]
19. Howarth WJ. Measurement of coalescence frequency in an agitated tank. AIChE Journal. 1967;13(5):1007-1013. [Link] [DOI:10.1002/aic.690130532]
20. Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science. 2010;65(10):2851-2864. [Link] [DOI:10.1016/j.ces.2010.02.020]
21. Prince MJ, Blanch HW. Bubble coalescence and break-up in air-sparged bubble columns. AIChE Journal. 1990;36(10):1485-1499. [Link] [DOI:10.1002/aic.690361004]
22. Sovova H. Breakage and coalescence of drops in a batch stirred vessel-II comparison of model and experiments. Chemical Engineering Science. 1981;36(9):1567-1573. [Link] [DOI:10.1016/0009-2509(81)85117-2]
23. Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns. Chemical Engineering Science. 2001;56(3):1159-1166. [Link] [DOI:10.1016/S0009-2509(00)00335-3]
24. Kamp J, Kraume M. From single drop coalescence to droplet swarms-scale-up considering the influence of collision velocity and drop size on coalescence probability. Chemical Engineering Science. 2016;156:162-177. [Link] [DOI:10.1016/j.ces.2016.08.028]
25. Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches. Reviews in Chemical Engineering. 2017;33(1):1-47. [Link] [DOI:10.1515/revce-2015-0071]
26. Neeson MJ, Tabor RF, Grieser F, Dagastine RR, Chan DYC. Compound sessile drops. Soft Matter. 2012;8(43):11042-11050. [Link] [DOI:10.1039/c2sm26637g]
27. Tabor RF, Wu Ch, Lockie H, Manica R, Chan DYC, Grieser F, et al. Homo-and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy. Soft Matter. 2011;7(19):8977-8983. [Link] [DOI:10.1039/c1sm06006f]
28. Bonhomme R, Magnaudet J, Duval F, Piar B. Inertial dynamics of air bubbles crossing a horizontal fluid-fluid interface. Journal of Fluid Mechanics. 2012;707:405-443. [Link] [DOI:10.1017/jfm.2012.288]
29. Chakibi H, Hénaut I, Salonen A, Langevin D, Argillier JF. Role of bubble-drop interactions and salt addition in flotation performance. Energy & Fuels. 2018;32(3):4049-4056. [] [DOI:10.1021/acs.energyfuels.7b04053]
30. Feng J, Muradoglu M, Kim H, Ault JT, Stone HA. Dynamics of a bubble bouncing at a liquid/liquid/gas interface. Journal of Fluid Mechanics. 2016;807:324-352. [Link] [DOI:10.1017/jfm.2016.517]
31. Feng J, Roché M, Vigolo D, Arnaudov LN, Stoyanov SD, Gurkov TD, et al. Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Physics. 2014;10(8):606-612. [Link] [DOI:10.1038/nphys3003]
32. Li EQ, Al-Otaibi SA, Vakarelski IU, Thoroddsen ST. Satellite formation during bubble transition through an interface between immiscible liquids. Journal of Fluid Mechanics. 2014;744:R1. [Link] [DOI:10.1017/jfm.2014.67]
33. Li EQ, Vakarelski IU, Chan DYC, Thoroddsen ST. Stabilization of thin liquid films by repulsive van der Waals force. Langmuir. 2014;30(18):5162-5169. [Link] [DOI:10.1021/la500868y]
34. Ge XH, Geng YH, Zhang QC, Shao M, Chen J, Luo GS, et al. Four reversible and reconfigurable structures for three-phase emulsions: Extended morphologies and applications. Scientific Reports. 2017;7:42738. [Link] [DOI:10.1038/srep42738]
35. Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip. 2016;16(18):3415-3440. [Link] [DOI:10.1039/C6LC00809G]
36. Planchette C, Lorenceau E, Brenn G. Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;365(1-3):89-94. [Link] [DOI:10.1016/j.colsurfa.2009.12.011]
37. Silva BFB, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Current Opinion in Colloid & Interface Science. 2016;25:98-108. [Link] [DOI:10.1016/j.cocis.2016.07.006]
38. Torza S, Mason SG. Three-phase interactions in shear and electrical fields. Journal of Colloid and Interface Science. 1970;33(1):67-83. [Link] [DOI:10.1016/0021-9797(70)90073-1]
39. Torza S, Mason SG. Coalescence of two immiscible liquid drops. Science. 1969;163(3869):813-814. [Link] [DOI:10.1126/science.163.3869.813]
40. Kirkpatrick RD, Lockett MJ. The influence of approach velocity on bubble coalescence. Chemical Engineering Science. 1974;29(12):2363-2373. [Link] [DOI:10.1016/0009-2509(74)80013-8]
41. Zawala J, Krasowska M, Dabros T, Malysa K. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. The Canadian Journal of Chemical Engineering. 2007;85(5):669-678. [Link] [DOI:10.1002/cjce.5450850514]
42. Moosai R, Dawe RA. Gas attachment of oil droplets for gas flotation for oily wastewater cleanup. Separation and Purification Technology. 2003;33(3):303-314. [Link] [DOI:10.1016/S1383-5866(03)00091-1]
43. Vakarelski IU, Lee J, Dagastine RR, Chan DYC, Stevens GW, Grieser F. Bubble colloidal AFM probes formed from ultrasonically generated bubbles. Langmuir. 2008;24(3):603-605. [Link] [DOI:10.1021/la7032059]
44. Zhang Y, Shitta A, Meredith JC, Behrens SH. Bubble meets droplet: Particle-assisted reconfiguration of wetting morphologies in colloidal multiphase systems. Small. 2016;12(24):3309-3319. [Link] [DOI:10.1002/smll.201600799]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.