Volume 12, Issue 3 (8-2012)                   Modares Mechanical Engineering 2012, 12(3): 147-155 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Effective parameters in modeling of graphene sheet Young’s modulus. Modares Mechanical Engineering 2012; 12 (3) :147-155
URL: http://mme.modares.ac.ir/article-15-3186-en.html
Abstract:   (6004 Views)
In this research, the effects of different parameters on simulation of Young’s modulus of a Graphene sheet are studied. In simulation of Young’s modulus of Graphene sheet, different parameters such as the thickness of a single layer of Graphene, type of loading and boundary conditions, effects of interactions non-neighbor atoms, type of element for carbon-carbon bond, mechanical properties of carbon-carbon bond and the size of the Graphene sheet influence the results. It was found that the thickness of a single layer Graphene and the type of element are effective parameters. Moreover, the type of loading and boundary conditions did not influence the Young’s modulus of the Graphene sheet. Therefore, the Graphene sheet can be considered as an isotropic material. Considering the effects of interactions of non-neighbor atoms increases the run-time and improves the accuracy of calculations. Mechanical properties of carbon-carbon bond are important parameters and must be chosen carefully. Also, it has been observed that when the length and width of the Graphene sheet are smaller than one nanometer, the size of Graphene sheet has a great influence on the Young’s modulus.
Full-Text [PDF 812 kb]   (5289 Downloads)    

Received: 2011/11/21 | Accepted: 2012/03/3 | Published: 2012/09/10

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.