Volume 16, Issue 12 (2-2017)                   Modares Mechanical Engineering 2017, 16(12): 61-66 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei Darani S, Naghdabadi R, Jokar E, Irajizad A. Experimental study on mechanical properties of graphene oxide/epoxy nonocomposites in different strain rates. Modares Mechanical Engineering 2017; 16 (12) :61-66
URL: http://mme.modares.ac.ir/article-15-3655-en.html
1- Professor of mechanical engineering in Sharif University of Technology.
Abstract:   (5311 Views)
In this paper, the mechanical behavior of the Graphene Oxide (GO)/ epoxy nanocomposites has been investigated under different strain rates. To reach this goal, GO nano sheets were synthesized through Hummers method (a chemical method) and then GO/epoxy nanocomposite was prepared using the solution-based method. Standard specimens test were made from nanocomposite. In order to study the static and dynamic behavior of material, the static pressure test and the split pressure hopkinson bar test were performed on the specimens, respectively. The results showed that the stiffness and the strength of epoxy increase with adding GO to it. It was found that the behavior of epoxy is dependent on the strain rate so intense that its dynamic strength is more than static one about 50%. Furthermore, the effect of GO in low strain rates is more than high strain rates such that adding 0.3% weight ratio of GO increase the strength of epoxy by nearly 20% and 5% in 0.01 s^(-1) and 1100 s^(-1) of strain rates, respectively. In addition, the comparison of Scanning Electron Microscopy (SEM) images from the fracture surfaces of neat epoxy and its composite showed that the surface toughness of nanocomposite is more than epoxy’s.
Full-Text [PDF 351 kb]   (5341 Downloads)    

Received: 2016/08/14 | Accepted: 2016/10/22 | Published: 2016/11/19

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.