
  

  1395163 311-318
                

  

    

     
mme.modares.ac.ir

  

    

    

    

    
                

 

  
:  Please cite this article using:

M. Khazaee, A. Banakar, B. Ghobadian, M. Mirsalim, S. Minaei, S. M. Jafari, P. Sharghi, Analysis of Timing Belt Vibrational Behavior During Durability Test Using Artificial
Neural Network (ANN), Modares Mechanical Engineering Vol. 16, No. 3, pp. 311-318, 2016 (in Persian)

              

12*3456

7  

1-             
2-           
3-           
4-          
5-           
6-         )(   
7-         )(   
 *   :111-14115 ah_banakar@modares.ac.ir  

      
  

 :17  1394  
 :17  1394  

 :07 1395  

   
 .

 . .

)  .ANN (
 .

98%98 %97 .  %
) R2 (

0.870.91 0.87 )   .RMSE (
 3.6%5.4 %5.6  %.  

  
   
    

    
   

   )ANN(  

  

  

Analysis of Timing Belt Vibrational Behavior During a Durability Test Using 
Artificial Neural Network (ANN) 

Meghdad Khazaee1, Ahmad Banakar1*, Barat Ghobadian1, Mostafa Mirsalim2, Saeid Minaei1, Seyed 
Mohamad Jafari3, Peyman Sharghi3 

1- Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran 
2- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran 
3- Irankhodro Powertrain Company, Tehran, Iran 
* P.O.B. 14115-111, Tehran, Iran, ah_banakar@modares.ac.ir 

ARTICLE INFORMATION  ABSTRACT 
Original Research Paper 
Received 08 November 2015 
Accepted 06 February 2016 
Available Online 26 March 2016 
 

 In this research, an intelligent method is introduced for prediction of remaining useful life of an internal 
combustion engine timing belt based on its vibrational signals. For this goal, an accelerated durability 
test for timing belt was designed and performed based on high temperature and high pre tension. Then, 
the durability test was began and vibration signals of timing belt were captures using a vibrational 
displacement meter laser device. Three feature functions, namely, Energy, Standard deviation and 
kurtosis were extracted from vibration signals of timing belt in healthy and faulty conditions and timing 
belt failure threshold was determined. The Artificial Neural Network (ANN) was used for predicting 
and monitoring vibrational behavior of timing belt. Finally, the ANN based on Energy, Standard 
deviation and kurtosis features of vibration signals could predict timing belt remaining useful life with 
accuracy of 98%, 98% and 97%, respectively. The correlation factor (R2) of vibration time series 
prediction by ANN and based on Energy, Standard deviation and kurtosis features of vibration signals 
were determined as 0.87, 0.91 and 87, respectively. Also, Root Mean Square Error (RMSE) of ANN 
based on Energy, Standard deviation and kurtosis features of vibration signals was calculated as 3.6%, 
5.4% and 5.6%, respectively. 
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Table 1 Name and formulas of the extracted features from vibration 
signals 
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Table 2 Specification of the laser vibrometer sensor 
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Fig. 1 The proposed method in this research for timing belt life 
prediction 
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Fig. 2 Experimental test rig of this research 
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Fig. 3 Overloading condition in the timing belt 
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Fig. 4 Run to failure vibration signals of timing belt during durability 
test 
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Table 3 Thresholding of timing belt failure based on vibration features 
of timing belts 
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Fig. 5 Thresholding of failure based on energy features of vibration 
signals 
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Fig. 6 Thresholding of failure based on standard deviation of vibration 
signals 
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Fig. 7 Thresholding of failure based on kurtosis of vibration signals 
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Fig. 8 The predicted and real values of energy feature of vibration 
signals 
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Fig. 9 The predicted and real values of standard deviation feature of 
vibration signals 
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Fig. 10 The predicted and real values of kurtosis feature of vibration 
signals 
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Table 4 The accuracy of remaining useful life prediction of timing belt 
based on vibration features 
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