Volume 16, Issue 7 (9-2016)                   Modares Mechanical Engineering 2016, 16(7): 121-132 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Isvand H, Salmaninezhad A, Sharafi A. Experimental and numerical investigation of the length ratio and angle of attack effects on dynamic behavior of two plates perpendicular to the cylinder. Modares Mechanical Engineering 2016; 16 (7) :121-132
URL: http://mme.modares.ac.ir/article-15-4717-en.html
Abstract:   (4341 Views)
In this study, experimental and analytical unsteady flow around a cylinder model with rotational degrees of freedom is discussed. Experimental studies at different speeds and angles of attack for two cylinder models with different length ratios have been done. Meanwhile the analyses of numerical technique known as vortex panel method have been used. Analytical and experimental results show that the rotational and vibrational motion and a combination of these behaviors occur. These types of behaviors depend on ratio of length plates to cylinder radius, primary object angle of attack and free stream velocity. At different speeds and at all angles of attack for a length of less than 1, the model has vibrational Motion around a specific angle. This angle for cylinder with two plates is 90 degrees. Generally, the model tends to vibrational motion at low angles of attack with increasing length ratio and free stream velocity occurs and by increasing the Primary angle of attack is the desire to vibration motion around a specific angle. Also, in free stream velocity 10(□(m/sec)) and Higher, for length ratio 4, the model had a steady rotational motion. In addition, angular velocity models and Strouhal number on rotational motion is calculated. The results show that Strouhal Number is a fixed amount, by increasing the Reynolds Number.
Full-Text [PDF 1271 kb]   (5450 Downloads)    
Article Type: Research Article | Subject: Aerodynamics
Received: 2016/03/8 | Accepted: 2016/05/31 | Published: 2016/07/19

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.