كنترل جريان و كاهش ضريب پساى استوانه توسط سطوح متحر كک با شبيهسازى دوبعلى

سيد عرفان سليمى پور

مربى، مهندسى مكانيك، دانشگاه مهندسى فناورىهاى نوين قوچان، قوچان
esalimipour@qiet.ac.ir قوحان، كدسِتى 67335-94771 *

Flow control and drag reduction of circular cylinder using moving surfaces by two-dimensional simulation

Seyed Erfan Salimipour*

Mechanical Engineering Department, Quchan University of Advanced Technology, Quchan, Iran

* P.O.B. 94717-67335 Quchan, Iran, esalimipour@qiet.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 20 September 2016
Accepted 17 October 2016
Available Online 14 November 2016

Keywords:

Circular cylinder
Moving surfaces
Boundary layer
Power coefficient
Drag coefficient

Abstract

Flow around a circular cylinder placed in an incompressible uniform stream is investigated via twodimensional numerical simulation in the present study. Some parts of the cylinder are replaced with moving surfaces, which can control the boundary layer growth. Then, the effects of the moving surfaces locations on the power and drag coefficients are studied at various surface speeds. The flow Reynolds number is varied from 60 to 180 . To simulate the fluid flow, the unsteady Navier-Stokes equations are solved by a finite volume pressure-velocity coupling method with second-order accuracy in time and space which is called RK-SIMPLER. In order to validate the present written computer code, some results are compared with previous numerical data, and very good agreement is obtained. The results from this study show that some of these surfaces reduce the drag coefficients and the coefficient of the total power requirements of the system motion. The optimum location and the speed of the surfaces which cause the minimizing the power coefficient are also obtained. By observing the results it is found that in all Reynolds numbers, the minimum power coefficient or in other words, the optimum drag coefficient occurs at surface angle of 70°.

كنترل ريزش گردابه توسط محققان مختلف و با روشهاى متعددى
1- مقدمهd
مانند دمش و مكش جريان، زبرى سطح، استوانههاى چرخان و سطوح متحر ك انجام شده است [1]. يكى از آزمايشات اوليه در زمينه كنترل جريان توسط فاور [2] صورت گرفته است؛ او به كمك يك تسمه متحرك و دو قرقره كه روى سطح بالايى يک ايرفويل نصب كرده بود توانست رشد لايه مرزى را كنترل كند و جدايش جريان را تا زاويه حمله 55 5 به تأخير بيندازد. استراكوويج [3] اثرات چند ابزار كنترل جريان از قبيل ايجاد برآمدگى و پوشش روى سطح و همحننين استفاده از تثبيت كنندههايى در نزديكى دنباله جريان را مقايسه نمود. مودى و همكاران [4-6] با ساخت يك تونل باد، اثرات استوانههاى چرخان كوچکى را كه بهعنوان سطوح متحرك استفاده شده

```
به دليل كاربردهاى گسترده مهندسى و توانايى مطالعه جنبههاى مختلف علم
ديناميک سيالات روى يک هندسه ساده، جريان گذرنده از استوانه يكى از
مسائل مههم محسوب مىشود. از طرف ديگ,، كنترل جريان پیرامون اجسام
بهواسطه اهميت آن در بهينهسازى مصرف انرزى و كاهش هزينهها، مورد
توجه بسيارى از محققان مىباشد. محدود كردن ريزش گردابهها يكى از
كاربردهاى كنترل جريان است كه مىتواند موجب كاهش نيروهاى 
هيدرو/آيروديناميكى و ارتعاشات اجسام گردد. از نمونه كاربردهاى صنعتى اين 
مسأله مىتوان به استفاده از استوانه در قسمتهايى از سطح ايرفويل براى 
    تأخير در جدايش جريان، خطوط لوله ساحلى، اسكلهها و پلها اشاره کرد. 
```

يك سيلندر با مقطع مربعى را در عدد رينولدز 100 مطالعه و با استفاده از مكش، ريزش كردابه را متوقف نمودند. چن و و همكاران [24] با استفاده از يك

 سطوح متحر ك و در محدوده اعداد رينولدز بين 60 تا 180 مطالعه شده آر است. در هيجيك از پ夫وهشههاى گَششته، مطالعه روى يافتن موقعيت و سرعت بهينه سطوح متحرى كه موجب كمينه شدن توان مورد نياز براى حرى كت
 سرعت نسبى ميان سطح و جريان به حداقل برسد، رشد لايه مرزى متوقف

كند [25]. اهداف اصلى مطالعه حاضر بهصورت زير خلاصه مى يشود.
 - استفاده از مفهوم كنترل لايه مرزى با سطوح متحرى (MSBC) براى كنترل جريان پيرامون استوانه

توان و وضعيت ريزش گردابه تحت سرعتهاى مخاى مختلف سطوح مينيممسازى توان كل مورد نياز براى حركت سطوح و و حرك انتقالى استوانه

- بهدست آوردن موقعيت و سرعت بهينه سطوح، متناظر با حداقل
ضريب توان

بهمنظور اعمال سطوح متحرى روى استوانه، مطابق شكل 1 از دو سطح
 استفاده شده است.

 بسيار خوبى ميان نتايج حاصل كرديده است.

2- روابط رياضى و عددى
فرم انتگرالى معادلات پيوستگى و مومنتم در فرم بیىبعد بهصورت روابط (1) و (2) بيان مى گردد.

بودند، روى چند ايرفويل نظير NACA 63-218 و جوكوفسكى بررسى كرد؛ نتايج آنها مشخص كرد كه نصب استوانه چرخان در لبه بيشينه را افزايش داده و زاويه حمله واماندتى جريّى جريان را را تا 48° به تأخير مىاندازد. استريكوفسكى و سرينيواسان [7] جريان پيرامون يك استوانه را با با

 همكاران [8] با استفاده از يك استوانه چرخان روى ايرفويل 0024 NACA موفق شدند ضريب برآ را الز 0.85 به 1.63 افزايش 1.63 افز
 پیرامون يك استوانه به همراه دو استوانه كنترلى چرخان تان توسط ميتال [1]
 استوانههاى كنترلى را بررسى نمود و دريافت كه اين فاصله پا پارامتر بانر بسيار

 روى ايرفويلها ارائه داد و اثر موقعيتهاى مختلف المانهاى ماى متحرك را با با

> يكديگر مقايسه كرد.

كمينهسازى ضريب پسا يكى از اهداف اصلى كنترل جريان بدشار

 [19] نيروى پساى يك استوانه را از طريق كمينهسازى توان مصرفى و و با

 توانستند موقعيت قدرت چرخش

 اعداد رينولدز پايين متوقف كردند. ساها و شريواستاواوا [23] جريان كذرنده ازي از

[^0]\[

$$
\begin{align*}
& C_{d}=\frac{F_{d}}{\frac{1}{2} \rho U_{\infty}^{2} D} \tag{5}\\
& C_{d_{m s}}=\frac{F_{d_{m s}}}{\frac{1}{2} \rho U_{\infty}^{2} D} \tag{6}\\
& C_{P}=\frac{F_{d} U_{\infty}+F_{d_{m s}} U_{S}}{\frac{1}{2} \rho U_{\infty}^{3} D}=C_{d}+k C_{d_{m s}} \tag{7}\\
& C_{f}=\frac{\tau_{s}}{\frac{1}{2} \rho U_{\infty}^{2}} \tag{8}
\end{align*}
$$
\]

كه ضريب پساى سطح متحر ک (اصطكاكى)، ضريب توان كل و ضريب اصطكاک سطح و همچحنين هستند. نسبت سرعت $k=U_{s} / U_{\infty}$ بهصورت نسبت سرعت سطح متحرك به

3 - توليد شبكه محاسباتى و شر ايط مرزى

 در اين پثوهش براى حل جريان، از يك شبكه تر كيبى O-C استفاده شده است. بخشى از اين شبكه در شكل 3 مشاهده مى گردد. بخش O باعث ايجاد يك شبكه متعامد در نزديكى مرزهاى جامد و بخش C براى تسخير ريزش گردابه در چشت استوانه مناسب مىباشد. با توجه به شبكه استفاده شده، يكى مرز بيرونى دوردست و يك مرز داخلى منطبق بر سطح استوانه وجود دارد كه در شكل 4 نشان داده شده است.

Fig. 3 A part of grid used in flow computations
شكل 3 بخشى از شبكه استفاده شده در محاسبات جريان

Fig. 4 Boundary conditions applied to flow equations

$$
\text { شكل } 4 \text { شرايط مرزى اعمال شده به معادلات جر يان }
$$

$$
\begin{align*}
& \oint_{\partial \Omega} \rho V d S=0 \tag{1}\\
& \frac{\partial}{\partial \tau} \int_{\Omega} \vec{W} d \Omega+\oint_{\partial \Omega} \vec{J} d S=0 \tag{2}
\end{align*}
$$

كه Ω حجم كنترل، $\partial \Omega$ سطح محصور كننده حجم كنترل، τ زمان، V سرعت جريان عمود بر سطوح كنترل و dS المان سطح مىباشد. ${ }^{\text {س }}$ سار بردار متغير هاى

$$
\vec{W}=\left[\begin{array}{c}
\rho u \tag{3}\\
\rho v
\end{array}\right], \vec{J}=\left[\begin{array}{l}
\rho u V+n_{x} p-\frac{1}{\operatorname{Re}}\left(n_{x} \frac{\partial u}{\partial x}+n_{y} \frac{\partial u}{\partial y}\right) \\
\rho v V+n_{y} p-\frac{1}{\operatorname{Re}}\left(n_{x} \frac{\partial v}{\partial x}+n_{y} \frac{\partial v}{\partial y}\right)
\end{array}\right]
$$

كه سرعت عمود بر سطوح كنترل به صورت حاصلضرب نقطها بردار يكه عمود بر سطح مطابق رابطه (4) تعريف مى شود.

$$
\begin{equation*}
V \equiv \vec{v} \cdot \vec{n}=n_{x} u+n_{y} v \tag{4}
\end{equation*}
$$

در روابط بالا همه طولهاى هندسى نسبت به قطر استوانه (D)، سرعتهاى
 به ${ }^{2}{ }^{2}$ بىبعد شدهاند. معادلات حاكم (1) و (2) در يك دستگاه مختصات

منحنىالخط و روى هر حجم كنترل دلخواه، مانند شكل 2 اعمال مىشوند. بلمنظور حل عددى معادلات (1) و (2) از يكى روش جد جديد كوپل
سرعت-فشار موسوم به آر، كى -سيمپلر كه توسط راجاگوپالان و لستارى [26] معرفى گرديده، استفاده شده است. در اين روش كه داراى دقت زمانى و
 الگوريتم رانگ-كوتاى مرتبه چهیار حل شدهاند. مزيت مههم روش مذكور اين است كه يك معادله دقيق براى ميدان فشار ارائه مىكند كه تنها معادله ضمنى و غير خطى مسأله است و هيج تصحيحى براى فشار يا ميدان سرعت صورت نمىگيرد. بنابراين، نيازى به حل معادله تقريبى تصحيح فشار نمىباشد. جزئيات بيشتر روش فوق در مرجع [26] آمده آمدا است. در اين مقاله، معادله ضمنى فشار با الگوريتم اسآىیى كه توسط استون [27] معرفى گرديده، حل شده است.
با حل معادلات فوق، كميتهاى مورد نياز از قبيل فشار و مؤلفههاى
سرعت محاسبه شده و سپس، خطوط جريان و ضرايب پسا، توان و اصطكاک سطح حاصل خواهند شد. اين ضرايب طبق روابط (5) تا (8) تعريف مى شود:

Fig. 2 Control volume for the curvilinear system
شكل 2 حجم كنترل سيستم منحنىالخط

بى بعد τ در جريانى با عدد رينولدز 300 با نتايج دوبعدى ميتال و همكاران
 زمانى، مقدار جزئى اختلاف فاز بين دو منـين
 پديدهاى تصادفى است و ممكن است در حلهاى عدانى مانى مختلف و يا نتايج

 شود [31]؛ از اين رو در اين بررسى، فقط اعتبارسنجى حل كننده حاضر مد نظر بوده است.

Fig. 5 Variation of mean drag coefficient and the Strouhal number with respect to L / D for $k=1, \operatorname{Re}=180 \theta_{s}=70^{\circ}$ and $\varphi=10^{\circ}$
شكل 5 تغييرات ضريب پساى متوسط و عدد استروهال بر حسب نسبت طول به قطر $\varphi=10^{\circ}, \theta_{s}=70^{\circ}$ ، $\operatorname{Re}=180 ، k=1$ به ازاى

جدول 1 مقايسه ضرايب پسا در حل حاضر با نتايج شبيهسازى دوبعدى گذشته
Table 1 Comparison of mean drag coefficients with results from previous 2-D simulation

180	140	100	60	
1.33	1.33	1.35	1.42	مطالعه حاضر
1.32	1.34	1.36	1.44	روشكو [29]
1.33	1.33	1.35	1.42	هندرسون [30]
-	-	1.35	-	ميتال و همكاران [31]

Fig. 6 Temporal variation of drag coefficient for $\mathrm{Re}=300$ in 2-D simulation

شكل 6 مقايسه تغييرات زمانى ضريب پسا در Re = 300 با شبيدسازى دوبعدى

روى مرز ورودى، مقادير چگًالى، فشار و سرعتها بهصورت روابط (9) در نظر گرفته شدهاند:

$$
\begin{equation*}
\rho=\rho_{\infty} ; \quad p=p_{\infty} ; \quad u=U_{\infty} ; \quad v=0 \tag{9}
\end{equation*}
$$

كه ه نمايانگر جريان آزاد مىباشد. در شرايط مرزى خروجى مطابق رابطه (10)، فشار برابر با فشار جريان آزاد و تغييرات ساير متغيرها برابر با صفر اعمال شده است.

$$
\begin{equation*}
p=p_{\infty} ; \quad \frac{\partial \rho}{\partial n}=\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 \tag{10}
\end{equation*}
$$

روى مرز داخلى، با توجه به شرايط عدم لغزش سيال، سرعت جريان عمود بر
 برابر با مقدار لايه سيال مجاور قرار داده مىشود.

4- نتايج

1-4 - 4 - مطالعه استقلال شبكه
با توجه به وجود ريزش گردابه، اثرات آن تا فواصل نسبتاً زيادى در پايايين
 براى شبكه محاسباتى در نظر گرفته شود؛ بدين منظور، اثر نسبت طولهاى مختلف شبكه به قطر استوانه (L/D، شكل 4 ملاحظه گردد) و تعداد سلولهاى شبكه (N) بر روى نتايج مورد نظر مطالعه شده است. علاوه بر ضرايب
 استروهال مطابق رابطه (11) بيان مىشود، به شبكه محاسباتى وابستگى پيدا
مى كند.

$$
\begin{equation*}
S t=\frac{f D}{U_{\infty}} \tag{11}
\end{equation*}
$$

كه f فر كانس ريزش گردابهها است و از نوسانات منحنى ضريب برآ محاسبه مى شود. $6000 \leq N \leq 36000$ شكل 5 ضرايب پسا و عدد استروهال را براى متناظر با $20 \leq L / D \leq 90$ براى 20 Re=180، مىدهد. با توجه به نوسانى بودن ضرايب برآ و پسا، مقادير حداكثر، متوسط و حداقل آنها روى شكل نشان داده شدهاند تا تأثير شبكه بر دامنه نوسانات ضرايب فوق مشخص گردد. مشاهده مىشود كه براى $L / D \geq 50$ كه متناظر با N $N \geq 25000$ اثر تعداد سلولها، نتايجى با $2 / D=50$ و تعداد سلولهاى 18000، 22000 و 32000 در شكل 5 ارائه شدهاند كه نشان مىدهند بهازاى 22000 باى 2200 تغييرى در نتايج حاصله ايجاد نشده است. به همين منظور، براى محاسبات از شبكهاى با $L / D=50$ و $N=25000$ و سلولهاى نزديك سطح بر اساس محاسبات ميتال و كومار [28] برابر با 0.0025 قطر استوانه در نظر گرفته شده است. آنها از اين مقدار براى حل جريان گذرنده از استوانه چرخان حر نر عدد رينولدز 200 استفاده نمودهاند.

2-4-اعتبارسنجى
قبل از بهكار بردن برنامه كامپيوترى تدوين شده براى تحليل جريان گذرنده از استوانه بههمراه سطوح متحرك، لازم است تا اعتبار نتايج حل كننده مذكور ارزيابى شود. در ابتدا جريان گذرنده از استوانه بدون سطح متحرك در
 پساى متوسط حاصل از حل حاضر و تطابق بسيار خوب آن را با نتايج تجربى روشكو [29]، عددى هندرسون [30] و عددى ميتال و همكاران [31] تزارش مىدهد. بهعنوان بر رسى بعدى، تغييرات ضريب پساى استوانه بر حسب زمان

Fig. 8 Comparison of boundary layer growth for $k=0,1, \theta_{S}=70^{\circ}$ and $\varphi=10^{\circ}$ $\varphi=10^{\circ}$ و $\theta_{S}=70^{\circ}$ شكل 8 مقايسه رشد لايه مرزى در شرايط $k=0,1$

Fig. 9 contours of non-dimensional velocity magnitude for $k=0,1, \theta_{S}$ $=70^{\circ}, \varphi=10^{\circ}$ and $\operatorname{Re}=60$
شكل 9 كانتورهاى اندازه سرعت بىبعد در شرايط 9 و φ و $\mathrm{Re}=60$

سطوح متحرى با اثرى كه بر تنش برشى مى گذارند، رشد لايه مرزى را كنترل مى كنند؛ ضمن اينكه تنش برشى خـى خود تابعى از عدد رينولدز جريان مى ماشد. اثرات سرعت حركت سطوح بر ضر يب اصطكاك سطح متحر ک (C) تحت شرايط مذكور در شكل 11 ترسيم شده است. بهعنوان قرارداد، علامت تنش برشى به سمت پايين دست جريان، مثبت و به سمت بالا دست جريان، منفى فرض شده است. مشاهده مىشود كه با افزايش نسبت سرعت، ضريب اصطكاك سطح متحرك افزايش يافته است؛ زيرا اختلاف سرعت سطح و سيال لايه مجاور آن بيشتر شده كه موجب افزايش تنش برشى و در نتيجه افزايش ضريب اصطكاكى شده است. اين شكل همچچنين بيان مى كند كه با با بيشتر شدن عدد رينولدز، تنشهاى برشى و در نتيجه نيروى پساى اصطكاكى روى سطوح متحر ك كمتر مى گردد.

بهمنظور بررسى اعتبار حل كننده براى مسائل داراى سطح متحرك، ضرايب پساى متوسط استوانه چرخان در نسبت سرعتهاى بين 0 تا 4 و عدد رينولدز 200 محاسبه و با نتايج عددى ميتال و كومار [28] مقايسه شده است. شكل 7 انطباق بسيار خوب نتايج را نشان مىىدهد. بر اساس اعتبارسنجىهاى ارائه شده، مىتوان گفت كه برنامه كامپيوترى نوشته شده، براى بررسى هاى پزوهش حارسى حاضر قابل اطمينان مىباشد.

همان 4 - 3- اثرات سطح متحرك بر ميدان جريان
 جلوگيرى كنند. براى نشان دادن اين موضوع، جريان گذرنده از يكى استوانه بههمراه دو سطح متحرك متقارن با زاويه $\varphi=70^{\circ}=10^{\circ}$ و (مطابق شكل 1) در چهار مورد مختلف مطابق جدول 2 مطالعه شده كه در شكل 8 تغييرات اندازه سرعت،
 متحر ك، شكل 8 ملاحظه گردد)، نشان داده شده است. مشاهده مىشود كه سطح متحر ک ضخامت لايه مرزى را كاهش داده است. همچنين شكل فوق نشان مىدهد كه تغييرات ايجاد شده براى رينولدز 140 كمتر از رينولدز 60 مىباشد؛ زيرا با افزايش عدد رينولدز اثرات مومنتم نسبت به اثرات لزجت تقويت مىشوند. مورد 4 در شكل 8 با افزايش ناگرانهانى سرعت همراه مراه مىباشد؛
 سرعت به سطح به نوبه خود يكى مومنتم اضافى به لايه مرزى تزري كه در نتيجه موجب كاهش اثرات لزجت در اين ناحيه و نهايتاً افزايش مازاد سرعت شدهاند. كوچکى شدن ناحيه دنباله و ريزش گر گرابه در پشت است استوانه
 كانتور هاى اندازه سرعت شكل هاى 9 و 10 بهترتيب براى اعداد رينولدز 60 و

140 قابل مشاهده مىباشد.

Fig. 7 Comparison of mean drag coefficients of rotating cylinder for $k=0-4$ and $\operatorname{Re}=200$

$$
\text { شكل } 7 \text { مقايسه ضرايب پساى متوسط استوانه چرخان در k=0-4 و Re=200 }
$$

جدول 2 اطلاعات متغيرهاى مستقل براى موارد بر رسى شده
Table 2 Independent variables data for studied cases

$\varphi(\operatorname{deg})$	$\theta_{S}(\operatorname{deg})$	k	Re	$2, \rho$
10	70	0	60	1
10	70	1	60	2
10	70	0	140	3
10	70	1	140	4

نتيجتاً كاهش پسا مى گردد و بنابراين، توان لازم براى غلبه بر پسا نيز كم

 لازم براى حركت سطح متحرى نيز ازدياد آياد خواهد يافت.

Fig. 11 Skin friction coefficients on the moving surface for some speed ratio and $\theta_{S}=70^{\circ}, \varphi=10^{\circ}$ and $\mathrm{Re}=60,140$
 $\operatorname{Re}=60,140$ و $\varphi=10^{\circ}$

Fig. 12 Power coefficients for various k and θ_{S} and $\mathrm{Re}=60$
شكل 12 ضرايب توان با مقادير مختلف k و ${ }^{2}$ و و Re=60

Fig. 13 Power coefficients for various k and θ_{S} and $\operatorname{Re}=100$

$$
\text { شكل } 13 \text { ضرايب توان با مقادير مختلف } k \text { و }{ }^{\text {و و Re=100 }}
$$

Fig. 10 contours of non-dimensional velocity magnitude for $k=0,1, \theta_{S}$ $=70^{\circ}, \varphi=10^{\circ}$ and $\mathrm{Re}=140$
شكل 10 كانتورهاى اندازه سرعت بىبعد در شرايط $\varphi=10^{\circ} ، \theta_{S}=70^{\circ}$ و $k=0,1 ، ~$ $\mathrm{Re}=140$

4-4 - اثرات سطح متحر ك بر ضرايب توان و پسا
 1) توان مصرفى براى حركت سطوح متحرك و 2) توان مصرفى براى حركت انتقالى استوانه و غلبه بر نيروى پسا میى دستيابى به توان كمينه، موقعيت و سرعت سطوح متحر كـ بررسى و مقادير بهينه آنها مشخص شود. بهمنظور مطالعه اثران اترات سطوح متحرك بر بر ضرايب توان و پسا، جريانهايى با اعداد رينولدز بين 60 تا 180 از روى استوانـانهايى كه شامل سطوح متحرك با نسبت سرعتهاى مختلف مى مباشند، عبور دادي شدهاند. سپس مقادير و روند تغييرات ضرايب توان و پسا پی بحث و ارزيابیى گرديدهاند. در اين بررسى ها زاويه سطح متحركى (و) ثابت و و برابر با با 10 درج
 حسب نسبت سرعت بهترتيب براى اعداد رينولدز 60، 100، 140 و 180 نشان

 شده تزريق كند و به همين دليل با با افزايش ضريب تري توان

 است؛ اما افزايش نسبت سرعت موجب افزايش تنش برشى سطح و د در نتيجه
افزايش ضريب توان شده است.

جدول 3 شرايط بهينه متناظر با ضرايب توان كمينه
Table 3 Optimum conditions corresponding to the minimum power coefficients

\bar{C}_{d}	$\bar{C}_{P \text { min }}$	$\theta_{S}($ deg.)	k	Re
1.285	1.340	70	0.5	60
1.082	1.214	70	0.9	100
1.037	1.142	70	1.1	140
0.965	1.084	70	1.3	180

Fig. 16 comparison of the optimum and standard mean drag coefficients

$$
\text { شكل } 16 \text { مقايسه ضرايب پساى متوسط بهينه و استاندارد }
$$

خطوط جريان نشان داده شده در شكل 17 تأثير سطوح متحرك بر ريزش كردابههاى پشت استوانه را در عدد رينولدز 180 و تحت شرايط بر برّ برينه

 استاندارد كوچكتر شده است.

5- جمعبندى

در پ夫وهش حاضر، جريان ناپاياى لزج پیرامون يك استوانه بهصورت عددى

 حاصل شدند: - سطوح متحرى مىتوانند موجب كاهش ضخامت لايه مرزى و كوچک شده ناحيه دنباله و ريزش گر گردابه پشت استوانه شوند.

Fig. 17 comparison of vortex shedding for optimum and standard conditions, $\mathrm{Re}=180$

Re= شكل 17 مقايسه ريزش گردابه براى شرايط بهينه و استاندارد در 180

Fig. 14 Power coefficients for various k and θ_{S} and $\operatorname{Re}=140$

Fig. 15 Power coefficients for various k and θ_{S} and $\mathrm{Re}=180$

$$
\text { شكل } 15 \text { ضرايب توان با مقادير مختلف } k \text { و }{ }^{\text {و }} \text { و Re=180 }
$$

نتايج بالا بيان مىكنند كه بهازاى هر عدد رينولدز، يك موقعيت و نسبت سرعت بهينه وجود دارد كه منجر به كمينه شدن ضريب توان مىشان مقادير بهينه بههمراه ضرايب توان متوسط كمينه (متوسط متناظر با آن (
 نسبت سرعتهاى بيشترى به مقدار كمينه خود مىرسد؛ ضمن اينكه مقدار آن با افزايش نسبت سرعت و رينولدز، كاهش يافته است. در حقيقت، اعداد رينولدز بيشتر، توان مصرفى كل كمترى نياز دارند. شكل 16 مقايسه ضرايب پساى متوسط در شرايط بهينه و استاندارد (استوانه بدون سطح متحرك) را بر حسب عدد رينولدز نشان مىدهد. ديده مىشود كه سطوح متحر ك، كاهش خوبى را در ضريب پسا سبب شده شداند، بهطورى كه استوانه در شرايط بهينه، بهترتيب 10، 20، 22 و 28 درصد كاهش ضريب پسا نسبت به حالت استاندارد در اعداد رينولدز 60، 100، 140 و 180، داشته است. همحچنين مشاهده مىشود كه با افزايش عدد رينولدز، ضريب پساى متوسط كاهش و درصد بهبود آن افزايش يافته است. زيرا افزايش رينولدز، تنشههاى برشى و در نتيجه پساى اصطكاكى سطوح متحرك را كاهش مىدهد. بنابراين مىتوان كفت كه سطوح متحرك در اعداد رينولدز بيشتر، كارآيى بهترى دارند؛ البته بايد توجه داشت كه در اعدا داعداد رينولدز بزرگتر از 180، جريان در دنباله پشت استوانه، سهبعدى و آشفته مى آشود [32] و احتمال دارد كه روى عملكرد سطوح متحر ك تأثير بگذارد.
[5] V. J. Modi, F. Mokhtarian, M. S. U. K. Fernando, P. Lake, T. Yokomizo, Moving surface boundary-layer control as applied to two-dimensional airfoils, Journal of Aircraft, Vol. 28, No. 2, pp. 104-112, 1991.
[6] V. J. Modi, E. Shih, B. Ying, T. Yokomizo, Drag reduction of bluff bodies through momentum injection, Journal of Aircraft, Vol. 29, No. 1, pp. 429-436, 1992.
[7] P. J. Strykowski, K. R. Sreenivasan, On the formation and suppression of vortex 'shedding' at low Reynolds numbers, Journal of Fluid Mechanics, Vol. 218, No. 1, pp. 71-107, 1990.
[8] A. Z. Al-Garni, A. M. Al-Garni, S. A. Ahemd, A. Z. Sahin, Flow control for an aerofoil with leading edge rotation: An experimental study, Journal of Aircraft, Vol. 37, No. 4, pp. 617622, 2000.
[9] V. J. Modi, Moving surface boundary-layer control: A review, Journal of fluids and structures, Vol. 11, No.1, pp. 627-663, 1997.
[10] M. Gad-El-Hak, Modern developments in flow control, Applied Mechanics Reviews, Vol. 49, pp. 365-379, 1996.
[11] F. Abergel, R. temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, Vol. 1, No. 6, pp. 303-325, 1990.
[12] T. T. Medjo, R. temam, M. Ziane, Optimal and robust control of fluid flows: some theoretical and computational aspects, Applied Mechanics Reviews, Vol. 61, No. 1, pp. 010802-1-010802-23, 2008.
[13] C. Homescu, I. M. Navon, Z. Li, Suppression of vortex shedding for flow around a circular cylinder using optimal control, International Journal for Numerical Methods in Fluids, Vol. 38, No. 1, pp. 43-69, 2002.
[14] B. S. V. P. Patnaik, G. W. Wei, Controlling wake turbulence, Physical Review Letters, Vol. 88, No. 5, pp. 054502-1-054502-4, 2002.
[15] S. Muddada, B. S. V. Patnaik, An active flow control strategy for the suppression of vortex structures behind a circular cylinder, European Journal of Mechanics B - Fluids, Vol. 29, No.1, pp. 93-104, 2010.
[16] M. Jahanmiri, Active Flow Control: A Review, Research report 2010:12, Göteborg, Sweden, 2010.
[17] R. Sahu, B.S.V. Patnaik, CFD simulation of momentum injection control past a streamlined body, International Journal of Numerical Methods for Heat \& Fluid, Vol. 21, No. 8, pp. 9801001, 2011.
[18] A. S. Chan, Control and suppress the laminar vortex shedding off two-dimensional bluff bodies, Ph.D. thesis, Stanford university, USA, 2012.
[19] R. K. Shukla, J. H. Arakeri, Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion, Journal of Fluid Mechanics, Vol. 715, No.1, pp. 597-641, 2013.
[20] M. S. Reddy, S. muddada, B. S. V. Patnaik, Flow past a circular cylinder with momentum injection: Optimal control cylinder design, Fluid Dynamics Research, Vol. 45, No.1, pp. 1-27, 2013.
[21] S. E. Salimipour, Sh. Yazdani, Dynamic stall control of a low reynolds number airfoil with a separation bubble control blade, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 393-401, 2015. (in Persian فارسى)
[22] L. C. Hsu, D. C. Lai, j. Z. Ye, Suppression of vortex shedding of circular cylinder by a small control rod, Journal of Applied Mechanics and Materials, Vol. 477-478, No.1, pp. 265-270, 2013.
[23] A. K. Saha, A. Shrivastava, Suppression of vortex shedding around a square cylinder using blowing, Indian Academy of Sciences, Vol. 40, No. 3, pp. 769-785, 2015.
[24] W. Chen, Y. Liu, H. Hu, Suppression of vortex shedding from a circular cylinder by using a traveling wave wall, 52nd Aerospace Sciences Meeting, 13-17 January 2014, National Harbor, Maryland, 2014.
[25] M. Gad-El-Hak, D. M. bushnell, Separation Control: Review, Journal of Fluids Engineering, Vol. 113, No. 1, pp. 5-30, 1991.
[26] R. G. Rajagopalan, A. D. Lestari, RK-SIMPLER: Explicit TimeAccurate Algorithm for Incompressible Flows, AIAA Journal, Vol. 54, No. 2, pp. 616-624, 2016.
[27] H. L, Stone, Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM Journal of Numerical Analysis, Vol. 5, No. 3, pp. 530-538, 1968.

افزايش عدد رينولدز و نسبت سرعت بهتر تيب اثرات سطح متحر ى
را كاهش و اصطكاك سطح را افزايش مىدهند.
-
افزايش بيشتر نسبت سرعت، ضريب توان را افزايش داده است

سطوح متحرك وجود دارد كه منجر به كمينه شدن ضريب تون توان
مى شود.
استفاده از سطوح متحرك در محدوده اعداد رينولدز بين 60 تا
180، كاهش خوبى را در ضريب پسا نسبت به استوانه استاندارد

كاهش و درصد بهبود آن افزايش مى يابد.
سطوح متحرى موجب كوچكتر شدن نواحى ريزش گردابه و
كاهش نوسانات خطوط جريان نسبت به استوانه استاندارد مىشـريند
كه اين نوسانات بهواسطه تغييرات نيروهاى آيروديناميكى حاصل از
ريزش گردابه بهوجود مىآيند.

7 - مر اجع
[1] S. Mittal, Control of flow past bluff bodies using rotating control cylinders, Journal of Fluids and Structures, Vol. 15, No. 1, pp. 291-326, 2001.
[2] A. Favre, Contribution a l'étude expérimentale des mouvements hydrodynamiques à deux dimensions. Ph.D. thesis presented to the University of Paris, France, 1938.
[3] M. M. Zdravkovich, Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 7, No. 1, pp. 145-189, 1981.
[4] V. J. Modi, J. L. C. Sun, T. Akutsu, P. Lake, K. McMillan, P. G. Swinton, D. Mullins, Moving-surface boundary-layer control for aircraft operation at high incidence, Journal of Aircraft, Vol. 18, No. 11, pp. 963-968, 1981.
[31] R. Mittal, H. Dong, M. Bozkurttas, F. m. Najjar, A. Vargas, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of Computational Physics, Vol. 227, No.1, pp. 4825-4852, 2008.
[32] S. P, Singh, S. Mittal, Flow past a cylinder: shear layer instability and drag crisis, International Journal for Numerical Methods in Fluids, Vol. 47, No.1, pp. 75-98, 2005.
[28] S. Mittal, B. Kumar, Flow past a rotating cylinder, Journal of Fluid Mechanics., Vol. 476, No.1, pp. 303-334, 2003
[29] A. Roshko, Experiments on the flow past a circular cylinder at very high reynolds number, Journal of Fluid Mechanics, Vol. 10, No.1, pp. 345-356, 1961.
[30] R.D. Henderson, Details of the drag curve near the onset of vortex shedding, Phys. Fluids, Vol. 7, No. 9, pp. 2102-2104, 1995.

[^0]: ${ }_{2}^{1}$ Moving Surface Boundary-layer Control
 2 Passive
 ${ }^{3}$ Active
 ${ }^{3}$ Passive

