Volume 16, Issue 8 (10-2016)                   Modares Mechanical Engineering 2016, 16(8): 65-74 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammad Roknabadi H, Mahmoodi M J. Modeling of the effects of progressive anisotropic damage on the elastoplastic behavior of metal matrix composites. Modares Mechanical Engineering 2016; 16 (8) :65-74
URL: http://mme.modares.ac.ir/article-15-7398-en.html
Abstract:   (6302 Views)
The aim of this paper is investigation of progressive damage in a metal matrix composite lamina using coupling of micromechanical method and continuum damage mechanics viewpoint. The micromechanical method is a representative volume element based method known simplified unit cell method which possesses the capability of investigating of progressive damage and plastic behavior in the representative volume elements. The studied damage is isotropic and anisotropic based on continuum damage mechanics viewpoint. Under investigation composite system is Carbon/Aluminum composite. The matrix behavior is considered as isotropic and elastoplastic and the fiber behavior is transversely isotropic and elastic. The fiber arrangement within the matrix is regular. The matrix elastoplastic behavior model is included as bi-linear behavior and solution method is successive approximation method. According to available previous studies, Siliconcarbide/Titinium composite system is noticed for validation and comparison with experimental data. Also the effect of fiber volume fraction on the damage progression routine is studied. The results show that by increasing the longitudinal and transverse loadings, the damage variable grows in the fiber direction and perpendicular to the fiber direction and the axial and transverse Young's modulus decrease subsequently. Also the results prove that in longitudinal loading, considering anisotropic damage, damage progression in the fiber direction is more than its growth in perpendicular to the fiber direction. Whereas, under transverse loading, damage growth in perpendicular to the fiber direction is faster.
Full-Text [PDF 472 kb]   (5194 Downloads)    
Article Type: Research Article | Subject: Composites
Received: 2016/05/1 | Accepted: 2016/07/11 | Published: 2016/08/14

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.