Volume 17, Issue 8 (10-2017)                   Modares Mechanical Engineering 2017, 17(8): 267-278 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Safaei H, Davazdah Emami M. Numerical comparison between the impact of a completely molten and a semi-molten hollow droplet on a surface. Modares Mechanical Engineering 2017; 17 (8) :267-278
URL: http://mme.modares.ac.ir/article-15-7464-en.html
Abstract:   (4401 Views)
In this research, the impact of a completely molten hollow droplet and a semi-molten hollow droplet on a surface is simulated numerically. At first, the production process of hollow particles from the agglomerated particles is addressed analytically. By this model, one can predict the particle diameter, solid core diameter and shell thicknesses of produced particle. The results of this section show that hollow particle may hardly develop at small initial porosity values (p=0.2). Then, the collected data from analytical model is used as input data for numerical simulation. In the numerical model, the central solid core was assumed to be a fluid with high viscosity. Due to high impact velocity, volume and density changes of the trapped gas inside droplet are important. Therefore the compressible form of governing equations is used. The results show that the hydrodynamic and solidification behavior of a completely molten droplet and a semi-molten droplet during impact process are different. In the semi-molten state, the central solid core prevents the formation of a counter jet. For this reason, a hollow semi-molten droplet is solidified faster than a completely molten hollow droplet. The overall time of solidification in the completely molten state is 35 μs and the corresponding time for semi-molten state, is 12 μs. Moreover the splat of a semi-molten hollow droplet is more continues compared with a completely molten droplet
Full-Text [PDF 1628 kb]   (5333 Downloads)    
Article Type: Research Article | Subject: Two & Multi Phase Flow
Received: 2017/04/27 | Accepted: 2017/07/7 | Published: 2017/08/11

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.