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This study presents a numerical investigation for laminar mixed convection flow of radiating gases in an 
inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting and scattering medium. The 
governing differential equations consisting of the continuity, momentum and energy are solved 
numerically by the computational fluid dynamics (CFD) techniques to obtain the velocity and 
temperature fields. Discretized forms of these equations are obtained by the finite volume method and 
solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, besides 
convection and conduction, radiative heat transfer also takes place in the gas flow. For computation of 
the radiative term in the gas energy equation, the radiative transfer equation (RTE) is solved 
numerically by the discrete ordinate method (DOM). The effect of lid driven speed on the 
thermohydrodynamic behavior of two-dimensional cavity is carried out. Results are shown as contours 
of isotherms, streamlines and distributions of convective and total Nusselt numbers along the bottom 
wall of cavity. It is revealed that increase in Reynolds number causes almost uniform temperature 
distribution in cavity, especially for 30° and 60° inclination angles. 
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Fig. 1 Schematic of computational domain 
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Fig. 3 Distribution of the isotherm contours 
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Fig. 4 Comparison of the computed mid-plane temperature with 
theoretical result by Mahapatra et al. [22] 

4  
[22]  ( = 10, = 0.5, = 0.1, = 1)  

 4   
 [22]  

4 -3-  
   

  
 . 

    
2  .

 .
90×90 100×100 

1% 
90×90  

  
  

2   
Table 2 Grid independence study 
(Re = 800, Ri = 1, = 10, = 0.5 , = 0.1) 

  
   

60×60 2.2481 7.2438 

70×70  2.2340 7.2879 

80×80 2.2080 7.3176 

90×90  2.1916 7.3388 

100×100  2.1793 7.3541 

5 -  
 

 
 

(Re = 100 800) 
Ri = 1 

)= 0 90 (  .
   

 
  

 Ri 1 
 

5 
Ri 1   .5-

) = 0 ( 

 
 . 

     .
 Ri 1

 Ri 1 

  .  
  

 
  .

30° 60° 
  ) = 90(

  
 

6 
  . 

 
  .

5  
  

 
   

 
  

 
 

X

N
on

D
im

en
sio

na
lT

em
pe

ra
tu

re

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Present study

Mahapatra et al. [22]



    

        

  

244  1395163  

 

 
Re = 200 

  
Re = 100        

  
Re = 800 

 
Re = 400  

) = 0 

  
Re = 200 

  
Re = 100 

  
Re = 800   

Re = 400 
) = 30 

-0.11-0.09

-0.07

-0.05

-0.03

-0.01

0

0.01 0.02

-0.13

-0.11
-0.09

-0.07-0.05
-0.03

-0.01

0

0.001

0.005

-0.07
-0.05-0.03-0.01

0

0

0.01 0.03

0.
05 0.06

-0.09-0.07-0.05-0.03-0.01
0

0

0.05

0.03

0.01

-0.03

-0.02

-0.01

0

0.055

0.045

0.035
0.025
0.015
0.005

-0.045-0.035-0.025-0.015

-0.005
0

0.035

0.025

0.015

0.005

-0.005 -0.01
0

0.035

0.025
0.015

0.005

-0.02-0.015-0.005
0

0.05

0.04
0.03

0.02
0.01



    

        

1395163  245  

 
Re = 200 

 
Re = 100 

 
Re = 800 

 
Re = 400 

) = 60 

 
Re = 200 

 
Re = 100 

 
Re = 800 

 
Re = 400 

) = 90 

Fig. 5 Effect of Reynolds number on flow pattern in inclination angle 0-90 
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Fig. 6 Effect of Reynolds number on isotherms in inclination angle 0-90 
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Fig.  7 Distributions of Nu  along the bottom surface of cavity 
at different Reynolds numbers 
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Fig.  8 Distributions of Nu  along the bottom wall of cavity for 
pure convection and convection- radiation cases  

8    -
  

(Re = 200, = 5, = 0.5, = 0.1, = 0)  
  

 
Fig.  9 Distributions of Nu  along the bottom wall of cavity for 
pure convection and convection-radiation cases 
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Fig. 10 Distributions of Nu  along the bottom wall of cavity for 
different inclination angles  
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