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In this paper, magnetogasdynamics with outlet Knudsen of 0.2 is studied in a pressure-driven 
microchannel. By using a developed code, the effects of changing magnetic fieldparameters including 
power and length with implementation of slip velocity at the walls have been simulated numerically. 
The geometry is a two dimensional planar channel having a constant width throughout. The flow is 
assumed to be laminar and steady in time.In order to analyze the variation of velocity, pressure, Lorentz 
force and induction magnetic field, the governing equations for flow and magnetic fields have been 
solved simultaneously using the lattice Boltzmann. No assumption of being constant for parameters like 
Knudsen and volumetric forces is made. Another feature of this research is to improve the quantity of 
results, which is a major problem in this method and many studies have been done in this area. This 
study presents the results which have more quantitative agreement with that of analytical relations by 
using a second order accuracy for calculation of slip velocity and correction of pressure deviation curve 
in comparison with the past studies if a proper relaxation time is determined. The simulation results 
show a change in Fx profile to M if the length of external magnetic field length reduces to 40% of the 
whole.Removing applied magnetic field from both ends of the channel will increase pressure gradient at 
the intermediate part and displace the section at which the maximum pressure deviation occurs. Slip 
velocity and centerline velocity behave differently for the reduced magnetic field length.  
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Fig. 1 Pressure-driven microchannel and implemented magnetic field at 
the channel walls 
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Table 1 Problem's inputs and variation of magnetic field parameters 
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