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 Friction stir welded butt joints were performed on sheets made of AA2024-T351 aluminum alloy at tool 
rotational speeds of 400, 630, 800 rpm and traverse speeds of 8, 16, 25 mm/min. The fatigue crack 
propagation rate was investigated according to standard ASTM-E647 in CT specimens. FE simulation 
of FSW process was implemented for different welding conditions and next the fatigue crack 
propagation was simulated using XFEM method. In this analysis, to assess the damage in the joints, 
maximum stress criterion is used. The maximum principal stress in element was the fracture criterion. 
Numerical results are in good agreement with the experiments so the simulation is reliable. The 
obtained results show that the tool rotational and traverse speed affect the fatigues crack growth rate. 
For all welded specimens crack propagation rate was slower than that of the base metal for low values 
of K ( 13 MPa) but is much faster at high values of K. Furthermore fatigue properties of 
specimens that were welded with lower speeds are better than base metal and increase in rotational or 
traverse speeds of the tool will increase the crack propagation rate of the welded specimens. 
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Table 1 Elemental chemical composition (%) of 2024-T351 aluminum 
alloy 

Zn Si Mn Mg Fe Cu Al 
0.12 0.11 0.72 1.53 0.29 4.45 Base 

2 2024-T351  
Table 2 Mechanical properties of 2024-T351 aluminum alloy 

324 )MPa( 

429 )MPa( 

137  

0.31  

77.5  (GPa) 

3     
Table 3 Different values of applied rotational and traverse speeds of 
FSW experiments 

 (rpm) (mm.min-1) 
1 400 8 
2 400 16 
3 400 25 
4 630 8 
5 630 16 
6 630 25 
7 800 8 
8 800 16 
9 800 25 

6 Chevron Notch 
7 Elastic Compliance 
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Fig. 1 The tensile test apparatus (a), clamped specimen with 
extensometer and a camera (b) 

1  :  :
  

  

               
Fig. 2 Dimensions of the compact tension (CT) specimen (a), prepared 
CT specimen (b) 
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Fig. 3 FE model of meshed CT specimen 
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Fig. 4 crack propagation in FE model for different cycles and crack 
length for specimen 1 
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Fig. 5 Experimental and FEM results for crack length vs. cycles 
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Fig. 6 Fatigue crack growth vs. stress intensity factor diagram 
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Fig. 7 Experimental fatigue crack growth vs. stress intensity factor 
range of base metal and some welded specimens 
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Table 4 Paris constants calculated for base metal and welded 
specimens 

   

m c  m c  
3.92 1.18×10-8 6 3.45 2.46 ×10-8 1 

5.34 2.90×10-10 7 4.03 2.58×10-9 2 

5.11 1.23×10-9 8 6.37 3.9×10-11 3 

4.27 8.18×10-9 9 5.27 1.01×10-9 4 

3.97 9.97×10-9  3.64 3.01×10-8 5 
 

Fig. 8 Normalized fatigue crack growth rate vs. stress intensity range 
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Fig. 9 Effect of traverse speed on normalized crack growth rate at 
different rotational speeds. 400 rpm (a), 630 rpm (b) and 800 rpm (c) 
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Fig. 10 Effect of rotational speed on normalized crack growth rate at 
traverse speed of 16 mm/min 

10 
 16  

  

  
Fig. 11 The fracture surface of the specimen that welded by 
inappropriate welding condition 
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