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With the advancements of numerical upstream and central difference methods in modeling the
subsonic and supersonic flows in different paths including the flow inside turbine blades,
employing the numerical CUSP technique in the Jameson’s finite volume method can
simultaneously benefit from the positive features of both mentioned methods. The novelty of this
paper is irst, improving Jameson’s inite volume method in modeling 2D supersonic low
between the blades of steam turbine using the CUSP method, and second, defining the most
optimum control function mode using the Marquardt-Levenberg inverse method and by
accounting for the mass conservation equation. By considering the importance of the shock
regions in the blade’s surface suction side, the focus of the mentioned method is on this part
which results in the significant improvement of the pressure ratio in Jameson’s finite volume
method. The results of the first combined method (Jameson and CUSP) at the shock region of the
blade’s suction surface desirably agree with the experimental data, and decrease of numerical
errors at this region is resulted. Furthermore, the results of the second combined method
(Jameson, CUSP and inverse method) shows that in comparison with original Jameson’s method
and the irst combined method, by average, the conservation of mass condition is improved 15%
at the shock region of the blade’s suction surface.
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