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ABSTRACT
Wind turbines are subject to various unsteady aerodynamic effects. This includes the 
change of wind direction. In
turbine has been investigated under d
momentum (UBEM) theory and 
estimations. 
condi
into the BEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw 
conditions.  To verify this method, the results in the case of steady
reference wind turbine and in the unsteady case are compared with the 
results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of 
the 
time delay to a 
the reduction in periodic loads. The method presented here may facilitate i
controller design for wind turbines.
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BSTRACT
Wind turbines are subject to various unsteady aerodynamic effects. This includes the 
change of wind direction. In
turbine has been investigated under d
momentum (UBEM) theory and 
estimations. To take into account the time delay in aerodynamic loads due to a 
conditions, a dynamic wake model was implemented. The ONERA dynamic stall model was coupled 
into the BEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw 
conditions.  To verify this method, the results in the case of steady
reference wind turbine and in the unsteady case are compared with the 
results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of 
the blade and other p
time delay to a new
the reduction in periodic loads. The method presented here may facilitate i
controller design for wind turbines.
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Wind turbines are subject to various unsteady aerodynamic effects. This includes the 
change of wind direction. In this work
turbine has been investigated under d
momentum (UBEM) theory and Euler

To take into account the time delay in aerodynamic loads due to a 
tions, a dynamic wake model was implemented. The ONERA dynamic stall model was coupled 

into the BEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw 
conditions.  To verify this method, the results in the case of steady
reference wind turbine and in the unsteady case are compared with the 
results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of 

and other parameters such as rotor power. Increase in wind gradient can lead to increasing 
new equilibrium. The increase in yaw angle can be contributed to the rotor power and 

the reduction in periodic loads. The method presented here may facilitate i
controller design for wind turbines. 
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Euler-Bernoulli beam assumption were used for rotor power 

To take into account the time delay in aerodynamic loads due to a 
tions, a dynamic wake model was implemented. The ONERA dynamic stall model was coupled 

into the BEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw 
conditions.  To verify this method, the results in the case of steady
reference wind turbine and in the unsteady case are compared with the 
results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of 

arameters such as rotor power. Increase in wind gradient can lead to increasing 
equilibrium. The increase in yaw angle can be contributed to the rotor power and 

the reduction in periodic loads. The method presented here may facilitate i
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Fig. 2 Wind turbine at yaw condition 
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Fig. 4 Comparison of the calculated and reference power [23] 
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Fig. 5 Comparison of rotor shaft torque between present study and 
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Fig. 7 Elastic torsion of blade tip and rotor power, rotational speed 20 
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Fig. 9 Elastic torsion of blade tip and rotor power, rotational speed 10 
rpm, with dynamic stall model 
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Fig. 11 Different wind speed profile effect on wind turbine power 
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Fig. 14 Velocity diagram for a rotor blade section in yaw condition
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