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Precise modeling has great importance in systems which are designed to work in transonic regions. The 
scope of current investigation includes numerical simulation of static aeroelastic phenomena of 
deformable structures in transonic regimes. Transonic flow brings lots of instabilities for aerodynamic 
systems. These instabilities bring nonlinearity in flow and structure solvers. Due to improvements in 
numerical methods and also enhancement in computing technologies, computational costs are reduced 
and high-fidelity simulations are more applicable. Simulations in this paper are done in transonic flow 
(M = 0.96) on the benchmark wing AGARD 445.6. The procedure includes modal analysis, steady flow 
simulation and investigation of structure’s elastic behavior. At the first phase, the geometry model is 
validated by modal analysis with regard to comparison of first four natural frequencies and 
corresponding mode shapes. Then, a loose or staggered coupling is used to analyze aeroelastic behavior 
of the wing. In each simulation step, imposed pressure on the surfaces of the wing caused by transonic 
flow regime deforms the structure. In the results section, a comparison between imposed pressure 
coefficients in each step with the existing literature and experimental results is reported. Also, pressure 
coefficients in each step is calculated and reported. In this investigation by using multiple steps in one-
way fluid-structure analysis, deformations are reduced in each step and, as a result, the structure reached 
its static stability point.  
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Fig. 1 Aeroelastic triangle of aerodynamic, elastic and inertia forces 
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Table 1 AGARD 445.6 Weakened Model No. 3 Properties  

     
kg/m3 381.98    

- 0.31  
MPa 439.2   
MPa 3151.1   
MPa 416.2   

6 Grand Vibrational Test (GVT) 
7 Structural Model 

 

Fig. 2 AGARD 445.6 airfoil 
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Fig. 3 AGARD 445.6 dimensions  
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Table 2 Natural frequencies due to modal analysis  

4 3  2  1 3 
98.50 50.70 38.10 9.60 ) 1963 (]13[ 
89.94 50.50 37.12  9.63 ) 1996 (]14[ 
90.00 50.26 36.87  9.67 ) 2001 (]15[ 
95.32 50.25 38.74  9.61 ) 2014 (]16[ 
95.73 60.02 35.46  9.65  

2.8%  18.3%  6.9%  0.5%   

2 ANSYS Workbench 
3 Pressure Far-Field 
4 Symmetry 
5 Pressure Out-let 
6 Mean Aerodynamic Chord (MAC) 

  
  

Fig. 4 Structural model of AGARD 445.6 wing 
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Fig. 5 Modal analysis mode shapes  
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Fig. 6 Structured grid domain with 4M hexagonal elements 
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Fig. 7 Structural grid over wing and symmetry plane 
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Fig. 8 Fluid-Structure Interaction flow chart  
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Fig. 9 Pressure coefficient over 12.5% of wing span  
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Fig. 10 Pressure coefficient over 37.5% of wing span  
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Fig. 11 Pressure coefficient over 62.5% of wing span  
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Fig. 12 Pressure coefficient over 87.5% of wing span  
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Fig. 13 Pressure coefficient contour over wing bottom plane first step 
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1 Large eddy simulation (LES) 

  
Fig. 14 Total deformation of the wing in first data transfer 
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Fig. 15 Pressure coefficient difference over 12.5% of wing span  
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Fig. 16 Pressure coefficient difference over 37.5% of wing span  
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Fig. 17 Pressure coefficient difference over 62.5% of wing span  
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Fig. 18 Pressure coefficient difference over 87.5% of wing span  
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Fig. 19 Pressure coefficient contour over wing bottom plane second 
step 
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Fig. 20 Total deformation of the wing in second data transfer 
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Fig. 21 Total deformation of the wing in third data transfer 
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