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In this article, design and hardware development of a knee exoskeleton robot is discussed. The robot 
aims to help the individuals with lower extremity weakness or disability during the sit-to-stand 
movement. In the trajectory generation phase, a new method is proposed which uses a library of sample 
trajectories to predict the sit-to-stand movement trajectory based on the initial sitting conditions of the 
user. This method utilizes the theory of "dynamic movement primitives" to estimate the sit-to-stand 
trajectory. The trajectory generation method is tested on a library of human motion data which has been 
obtained in a laboratory of motion analysis. In the next step, an exponential sliding mode controller is 
used to guide the robot along the predicted trajectory. The controller and the trajectory generator are 
implemented on the exoskeleton robot. For the hardware development, the xPC Target toolbox of 
MATLAB software and a data acquisition card was used. Finally, the robot was tested on a male adult. 
The subjects were asked to wear the robot while doing several sit-to-stand movements from various 
sitting positions. According to the results, the average power which is required to be applied by the 
user’s knee is less when the exoskeleton assists him.  
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3 Dynamic Movement Primitives 
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1 Linear Series Elastic Actuator (LSEA) 
2 Ball-Screw 

 

Fig. 1 Knee exoskeleton which is designed in FUM robotic lab  
 1        
 

 

1    
Table 1 Specifications of the LSEA 

2.5 mm/rot  - 
5 mm -  

50000 N/m  
1000 N  

125 mm/s  
0. 04 mm±   
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 (a)  
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Fig. 2 (a) The linear series elastic actuator (LSEA) which is designed in 
FUM robotic lab; (b) Magnetic linear encoder in the LSEA.  
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Fig.  3 (a) Kinematic model of the human-exoskeleton system; (b) 
kinematic model of the knee exoskeleton 
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Magnetic tape 
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Table 2 Experiment conditions for sit-to-stand trials  

) cm( ) cm( 

-10, -7, -4, 0 ,4 40 
-10, -7, -4, 0 ,4 43 
-10, -7, -4, 0 ,4 46 
-10, -7, -4, 0 ,4 49 

 
Fig. 4 The procedure of the proposed trajectory generation method 

4     

Extracting the initial conditions , goal   and the time 
constants  of each trajectory 

 

, , , , , | = 1, … , = 1, … ,  

|

Acquiring sample points of all the training trajectories: 

= , , , , , ; ( , , )| = 1, … , = 1, … ,  

Labelling the acquired trajectories with their initial condition 
vector, goal vector, and their time constant 

Input the desired initial condition  and goal  
 

Minimizing the objective function  to find the optimum  
shape parameter vector  and time constant   

of DMP equations for the desired initial condition  and goal  
 

Using the optimum shape parameter vector  and time 
constant  in the DMP equations to generate the desired 

trajectory  
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Fig.  5 Snapshots from the motion analysis procedure of sit-to-stand 
movement 

5  
-- 

  
Fig. 6 Path of the shoulder, hip, knee and ankle during the sit-to-stand 
movement for four different seat heights 
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Fig.  7 Generalization of sit-to-stand movement. Graphs (a) and (b) 
show the knee angle with respect to the ankle angle for different foot 
position and different sit heights, respectively. Graphs (c) and (d) 
show the knee angle with respect to time for different foot position 
and different sit heights, respectively 
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Fig.  8 Overall diagram of trajectory estimation and control process 
for the knee exoskeleton 
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Fig.  9 Schematic diagram of exponential sliding mode control used 
for controlling The knee exoskeleton 
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Fig 10 Data acquisition board used for implemention of the controller 
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Fig. 11 Diagram of the hardware/software structure of the controller and trajectory generator of the exoskeleton  
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Fig. 12 Snapshots of the sit-to-stand movement with the help  The knee 
exoskeleton 
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Fig. 13 Graphs of mean and standard deviation of: (a) knee torque; (b) 
knee power; (c) knee angle; (d) vertical ground reaction force, during 
the sit-to-stand movement  
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Fig. 14 Average power of knee for the conditions of with / without 
assistance for: (a) different foot position and (b) different seat height 
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