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In this paper simulation of steady super cavitation phenomenon has been considered by using partial 
non-linear model of Boundary Element Method(BEM).The grid mesh used is fixed and the strength of 
dipole and source are constant on each element. With the assumption of a partial non-linear model the 
cavity condition is applied on the body with the assumption that cavity height is low. Thus there is not 
any calculation on the cavity surface, but it is restricted to only the panels on the body surface. 
Cavitation number is known at first and the cavity length is determined in every iteration. When the 
lengths obtained in two successive iterations are very close to each other it is assumed to be the answer. 
Based on this method two Kutta conditions including Morino condition and Iterative Pressure Kutta 
Condition(IPKC) are studied to satisfy the wake surface condition. The application is a wing with 
NACA16006 section. IPKC condition compared to Morino one needs higher computational costs, but 
on the other hand leads to more accurate results. It has been shown that simulation of the flows with 
super cavitation over wing leads to a pressure difference at the trailing edge of each strip if Morino’s 
Kutta condition is used. While if Iterative Pressure Kutta Condition is used the results are satisfactory. 
Comparison of the results shows that this method leads to very accurate predictions for the behavior of 
flows with cavitation, while significantly lower computational cost is required if the simple cavity 
closure condition is used. 

Keywords:
Super cavity 
Kutta condition 
Boundary Element Method (BEM) 
Wing 

  

1 -   

 .

 .
 .

             



    

      

1395167  13  

        .  
              

            
 .        

 
 -

 .
 .

 -
 .             

       .      
             
     .       
             

          
             

                 
                 
               

         .    
             
             

      

 .
 .

 . -

 . [1] 
 ( ) 

 .
 [2].  

[3] 
 .

 [4]   ]6,5[ 
  1 

. 

   
)1987(  .

1 Fully non-linear 

 .
2 

 [7] [8]  .
 

[9] .  .

 .
 . 

 [9] .

 [10] . -
 .

3  .

 .
  

 .

-  4  .

 

 [11] . 

[12]

 .
 [13] 

 
 .

 ]14[ . -

]15[ .

]16[    

2 Re-entrant jet 
3 Partialy non-linear
4 Pressure recovery



    

      

  

14  1395167  

 .

  

2 -   
 .

)  .
( ) = 0   

(1) ( , ) = 0 

     
)   

(2)   

(2) ( , ) = + ( , ) 
 - 

 .
(3)   

(3)  + +
| |

2 + = +
| |

2  

    -
 .

  

(4) =  

(5) =  

(3) (6)   

(6) 
2

+
| | | |

+
2

=  

(1)  
  .1 

 
 

 
  

 .

   

  
Fig. 1 Boundary of the flow domain and reference surface. 2D view 
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Fig. 2  Discretization parameters of three-dimensional wetted flow 
around the geometry model  [11] 
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Fig. 3 Pressure distribution for mid span section of 3D wing with 
NACA16006 section at. = 5° for different number of elements a)All 
over    b) Optional point 
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Fig. 4 Pressure distribution for mid span section. 3D NACA16006 
hydrofoil. = 5° for different number of elements a)All over    b) 
Optional point 
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Fig. 5 Pressure distribution for mid span section compared with 
experimental data [18]. 3D wing with NACA16006 section at = 5° 
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Fig. 6 Pressure distribution for tip span section, compared with 
experimental data [18]. 3D wing with NACA16006 section at = 5° 
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Fig. 7 Pressure distribution. 3D NACA16006 hydrofoil = 5° 
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Fig.  8 Pressure distribution.at mid-span on 3D wing with NACA16006 
section at = 5° , with and without IPKC conditions    a)All over    
b)T.E region 
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Table 1 Comparison of two Kutta conditions for = 5°  without 
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Fig. 9 Cavity lengths along the span for 3D wing with NACA16006 
section at   = 4°, = 0.6 for different chord-wise elements 
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Fig. 10 Cavity length  along the span on 3D wing with NACA16006 
section at   = 4°, = 0.6 for different spanwise elements 
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Fig. 11 Cavity length ( )  on 3D rectangular wing at = 4°  and 

= 0.6 
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Fig. 12 Cavity lengths along the span for 3D wing with NACA16206 
section at = 6° and = 0.628. compared with experiments [16] 
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Fig. 13  Pressure distribution over the 3D wing with NACA16206 
section at  = 6°, = 0.628 
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Fig. 14  Pressure distribution.at mid-span on rectangular wing at =
4°, = 0.6 with and without using IPKC  a)All over    b)T.E region 
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Table  2 Comparison of two Kutta conditions in modeling of partial 
cavitation at = 4°  = 0.6 
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= 0.6 for with and without IPKC. 
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Fig. 16 Super cavity length ( ) on half of rectangular wing.at = 8° 
and = 0.5 for with and without using IPKC 
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Fig. 17 Super cavity length ( ) on the rectangular wing at = 8° and 

= 0.5 for with and without IPKC. 
 17   
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Fig. 18 Pressure distribution.at mid-span of rectangular wing at =
8°, = 0.5 for with and without IPKC.   a)All over    b)T.E region 
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