AU - Bagheri, Mohammad Reza AU - Mosayebi, Masoud AU - Mahdian, Asghar AU - Keshavarzi, Ahmad TI - Pareto Optimization of a Three-Dimensional Full Vehicle Suspension Model Using Multi-Objective Genetic Algorithm PT - JOURNAL ARTICLE TA - mdrsjrns JN - mdrsjrns VO - 19 VI - 8 IP - 8 4099 - http://mme.modares.ac.ir/article-15-20856-fa.html 4100 - http://mme.modares.ac.ir/article-15-20856-fa.pdf SO - mdrsjrns 8 AB  - مقاله حاضر یک الگوریتم ژنتیک چندهدفه را برای طراحی بهینه یک سیستم تعلیق خودرو به کار می‌برد. مدل خودرو حرکت‌های سه‌بُعدی بدنه خودرو را در نظر می‌گیرد. در این مدل کامل خودرو که دارای ۸درجه آزادی است، حرکت عمودی صندلی مسافر، بدنه خودرو و چهار تایر و همچنین حرکت‌های چرخشی بدنه خودرو، درجات آزادی مدل را تشکیل می‌دهند. در این مقاله پارامترهای کاربردی تعلیق شامل شتاب صندلی مسافر، زاویه کله‌زنی بدنه خودرو، زاویه غلتش بدنه خودرو، نیروی دینامیکی تایر، سرعت تایر و انحراف تعلیق در نظر گرفته می‌شوند و در فرآیند بهینه‌سازی بهینه می‌شوند. جفت‌های متفاوتی از این پارامترها به‌عنوان توابع هدف، انتخاب و در فرآیند بهینه‌سازی چندهدفه بهینه می‌شوند و حل‌های پارتو برای جفت توابع هدف به دست می‌آیند. در فرآیند بهینه‌سازی نهایی، حل پارتو مربوط به مجموع پارامترهای بی‌بعد در یک گروه پارامترهای تعلیق نسبت به گروه دیگر به دست می‌آید. در این حل‌های پارتو، نقاط بهینه مهمی وجود دارند و طراحان می‌توانند هر یک از نقاط بهینه را برای یک هدف خاص انتخاب کنند. بهینه‌سازی پارتو بهتر از دیگر روش‌های بهینه‌سازی چندهدفه است، زیرا تعداد نقاط بهینه بیشتری در جبهه پارتو وجود دارد که هر نقطه معرف یک سطح از بهینه‌سازی برای جفت توابع هدف است و طراحان هر یک از نقاط را می‌توانند به دلخواه انتخاب کنند. CP - IRAN IN - Mechanical Engineering Department, Mechanical Engineering Faculty, Malek-Ashtar University Of Technology, Isfahan, Iran LG - eng PB - mdrsjrns PG - 1971 PT - YR - 2019