AU - Derakhshan, Sharam AU - Yazdani, Alireza TI - Modeling of a refrigerator utilizing solar energy and vehicle exhaust, for refrigerating pharmaceutical products and vaccines in disaster vehicle PT - JOURNAL ARTICLE TA - mdrsjrns JN - mdrsjrns VO - 15 VI - 10 IP - 10 4099 - http://mme.modares.ac.ir/article-15-6727-en.html 4100 - http://mme.modares.ac.ir/article-15-6727-en.pdf SO - mdrsjrns 10 ABĀ  - In critical situations such as floods and earthquakes, the relief forces require a refrigerator for pharmaceuticals and vaccines which can operate without electrical energy and instead, it uses alternative energies such as solar energy, vehicle exhaust energy, wind energy, etc. In this paper, modeling of a refrigerator with an adsorption refrigeration cycle using activated carbon/methanol as adsorbent/adsorbate pair which utilizes two sources of energy, solar energy and vehicle exhaust energy is presented in MATLAB. The solar refrigeration cycle includes a collector with area of 1m2 and the exhaust gas cycle includes a heat exchanger with temperature difference of 100°C between its inlet and outlet gases. Modeling results represent the temperature profile in adsorbent bed, evaporator and condenser. Moreover, the pressure profile, overall heat transfer coefficient of collector and adsorbent bed, concentration and solar radiation are reported. The results show coefficient of performance of 0.5491 and solar coefficient of performance of 0.2000 for solar adsorption refrigeration and coefficient of performance of 0.5607 with specific cooling power of 2.4777 for exhaust heat adsorption refrigeration. These results reveal the good performance of the proposed model in the climate of Iran. CP - IRAN IN - LG - eng PB - mdrsjrns PG - 147 PT - YR - 2016