AU - Nosratolahi, Mehran AU - Adib Ghapanvary, Mohammad TI - Gliding parachute platform design optimization with performance & stability Constraints PT - JOURNAL ARTICLE TA - mdrsjrns JN - mdrsjrns VO - 17 VI - 4 IP - 4 4099 - http://mme.modares.ac.ir/article-15-3665-en.html 4100 - http://mme.modares.ac.ir/article-15-3665-en.pdf SO - mdrsjrns 4 ABĀ  - In this paper conceptual design and optimization of gliding parachute configuration are discussed. To this end, a design cycle is planned for conceptual design procedure and an optimization-based design approach are established to provide an integrated design algorithm for gliding parachute platforms. The optimization problem is formulated with a cost minimization approach which is constrained by static stability and safe landing velocity as design criteria. The parachute configuration is defined with minimum required parameters and aerodynamics, stability and performance characteristics are provided based on a semi-analytical approach. Hence, a computational software is incorporated with theoretical approximations to provide the required disciplinary data flow in the design cycle.The significant design parameters are verified by available wind tunnel test data.Optimization problem is solved using genetic algorithm method whereas constraints are handled by penalty function approach.Trim points are obtained like an all-at-once approach through a simultaneous analysis and design algorithm. Finally, as a case study,optimized configuration is achieved for a real gliding parachute. Results show a fair estimation of parachute characteristics along with the reduction in manufacturing cost for new configuration up to 25%. CP - IRAN IN - LG - eng PB - mdrsjrns PG - 209 PT - YR - 2017