Abstract

Time optimal trajectory planning of closed chain mechanisms has not been done by indirect method yet. In this paper, this problem is considered for a four bar mechanism and its solution is presented on the basis of the indirect solution of optimal control problem. To this end, the additional coordinates are omitted using the holonomic constraints, so the dynamic equation is obtained with respect to only one generalized coordinate. Then the necessary conditions for optimality are derived using Pontryagin’s minimum principle by considering the constraint on the applied torque. The obtained equations lead to a two-point boundary value problem (BVP) which is the optimum answer. Unlike the direct methods that result in approximate solution, indirect method leads to an exact solution. But the main challenge in indirect method is solving this problem is sensitive to the initial guess. This problem is much more severe for time optimal problem which has a high nonlinear answer in bang-bang form. To overcome this problem an algorithm is proposed to solve the time optimal problem with any desired accuracy, and the initial solution can simply be zero at the start of the trajectory planning. To overcome this problem, another algorithm is presented to calculate the minimum time with bounded speed. The obtained equations lead to a two-point boundary value problem (BVP) which is the optimum answer. Unlike the direct methods that result in approximate solution, indirect method leads to an exact solution. But the main challenge in indirect method is solving this problem is sensitive to the initial guess. This problem is much more severe for time optimal problem which has a high nonlinear answer in bang-bang form. To overcome this problem an algorithm is proposed to solve the time optimal problem with any desired accuracy, and the initial solution can simply be zero at the start of the algorithm. In time optimal trajectory planning the large jerk occurs, due to control signals switching. In order to overcome this problem, another algorithm is presented to calculate the minimum time with bounded jerk. Finally, the simulation results show the performance of the proposed method in time optimal trajectory planning.

Amin Nikoobin*, Amir Kamal

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

* P.O.B. 3513119111, Semnan, Iran, anikoobin@semnan.ac.ir

Keywords:
Four Bar Mechanism, Optimal Control, Indirect Method, Bounded Jerk

References:

Please cite this article using:

2- استخراج معادله دینامیک مکانیک محور لینکی

در این بخش تنظیم سیستم‌های نسبت به استخراج معادلات دینامیک به روش اچ‌بی‌پریکز پرایز لینکی ارائه می‌شود.

2-1- مقدمه

شکل 1 مکانیک محور لینکی صفحه‌ای نشان می‌دهد. در این روش، معادلات اولیه بسته در نظر گرفته شده و معادلات سطحی از این راهکار به استخراج معادلات دینامیک ارائه می‌شود.

2-2- تحلیل سرعت

مشتق گذی از معادلات (1) و (2) را نتیجه می‌دهد.

\[
\begin{align*}
L_2 \sin \alpha L_1 \cos \theta - L_2 \sin \theta L_1 \cos \alpha &= L_{12} \sin \phi \\
L_2 \cos \alpha L_1 \sin \theta - L_2 \cos \theta L_1 \sin \alpha &= L_{12} \cos \phi
\end{align*}
\]

2-3- محاسبه ارزي جنبشی و پتانسیل

روش لگاریتمی روش شناسی شده و برای کاربردهای مدل‌سازی سیستم‌های مکانیکی، به خصوص سیستم‌های مشکل از جمله می‌باشد.

\[
\begin{align*}
L_2 \sin \alpha L_1 \cos \theta - L_2 \sin \theta L_1 \cos \alpha &= L_{12} \sin \phi \\
L_2 \cos \alpha L_1 \sin \theta - L_2 \cos \theta L_1 \sin \alpha &= L_{12} \cos \phi
\end{align*}
\]

Fig. 1 Schematic diagram of planar parallel four-bar mechanism

شکل 1 شکل شماتیک سیستم مکانیکی محور لینکی صفحه‌ای
\[
\frac{dL}{d\theta} = \frac{\partial L}{\partial \theta} + \frac{\partial L}{\partial \alpha} \frac{d\alpha}{d\theta}
\]
(23)

با توجه به معادله (20)، مشتق جزئی لگاریتم نسبت به تابع پارامترهای \(\theta, \alpha\) در رابطه (23) را نتیجه می‌دهد.

\[
M(\theta, \alpha, \phi) = m_1 l_1 L_2^2 + l_2 l_4 + m_2 L_2^2 + \\
+ \frac{m_1 L_1 L_2 \sin(\phi - \theta) \cos(\alpha - \theta)}{L_3 \sin(\phi - \theta)} + \\
+ \frac{m_2 L_2 \cos(\phi - \theta) \sin(\alpha - \theta)}{L_3 \sin(\phi - \theta)} + \\
- \frac{m_1 L_1 L_2 \sin^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)} - \\
+ \frac{m_2 L_2 \cos^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)} + \\
\times L_2 L_2 \sin^2(\phi - \theta) + \frac{m_2 L_2 \cos^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)}
\]
(24)

در معادله (24)، ماتریس انریسی \(G(\theta, \alpha, \phi)\) از جایی و کنشروده است.

\[
M(\theta, \alpha, \phi) = m_1 l_1 L_2^2 + l_2 l_4 + m_2 L_2^2 + \\
+ \frac{m_1 L_1 L_2 \sin(\phi - \theta) \cos(\alpha - \theta)}{L_3 \sin(\phi - \theta)} + \\
+ \frac{m_2 L_2 \cos(\phi - \theta) \sin(\alpha - \theta)}{L_3 \sin(\phi - \theta)} + \\
- \frac{m_1 L_1 L_2 \sin^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)} - \\
+ \frac{m_2 L_2 \cos^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)} + \\
\times L_2 L_2 \sin^2(\phi - \theta) + \frac{m_2 L_2 \cos^2(\phi - \theta)}{L_3^2 \sin^2(\phi - \theta)}
\]
(25)

از جایی طبق معادله (26) تعريف می‌شود.

\[
G(\theta, \alpha, \phi) = L_1 m_1 \cos(\theta) + L_2 m_1 \cos(\theta) - \\
\times L_3 m_2 \cos(\theta) \frac{L_1 (L_2 \cos(\theta) - L_2 \cos(\theta - \phi))}{B_1} + \\
\times L_2 m_2 \cos(\theta) \frac{B_1 B_2}{L_2 \sin(\phi - \theta)} + \\
\times L_1 m_2 \cos(\phi) B_2 B_3
\]
(26)

ضابط معادله (26) عبارتند از:

\[
B_1 = l_2 \cos(\phi) L_2 + 2 L_2 \cos(\phi) L_2 L_4 + L_2^2 - \\
- 2 L_4 \sin(\phi) B_4 B_5 + 2 L_4 \cos(\phi) \sin(\phi) = 1
\]

\[
B_2 = 2 B_5 \sin(\phi) B_4 B_5 + 2 B_5 \cos(\phi) - 2 B_5 \sin(\phi) \times \\
\times B_5 \sin(\phi) - 2 L_4 \sin(\phi) \times \\
\times B_5
\]

\[
B_3 = \left(B_5 - B_5 \sin(\phi) \right) \times \\
\times + 1
\]

\[
B_4 = B_5 \sin^2(\phi) + 4 L_2^2 B_2 - B_5^2 - \\
\times B_5 \cos(\phi) - B_6 - 2 L_4 B_7
\]

\[
B_5 = B_6 - B_6 \cos(\phi)
\]

\[
B_7 = L_0 - L_1 \cos(\theta)
\]

(27)

از این روی باید استخراج معادلات دینامیکی مکانیزم استفاده می‌شود. با استفاده از ارزیابی چندین حل سیستم لگاریتمی می‌توان محاسبه می‌شود. مجموع ارزیابی چندین مکانیزم چهار لنگه به صورت

\[
T = T_1 + T_2 + T_3
\]
(13)

از ارزیابی هر یک از لنگه‌ها به صورت رابطه (14) تعريف می‌شود.

\[
T_1 = \frac{1}{2} (m_1 ||v_{c1}||^2 + l_1 \dot{\theta}^2)
\]

\[
T_2 = \frac{1}{2} (m_2 ||v_{c2}||^2 + l_2 \dot{\alpha}^2)
\]

\[
T_3 = \frac{1}{2} (m_3 ||v_{c3}^2 + l_3 \dot{\phi}^2)
\]
(14)

مربع سرعت مرکز لنگه رابطه (15) بسته وی در مسیر جرم لنگه، \(l, m, i, (1=1,2,3)\) به ایز هر لنگ ان جرم لنگه \(i \) مانند انتزاع لنگه

\[
\begin{align*}
& l_1 \sin\theta \\
& l_2 \sin\alpha \sin\theta + l_2 \cos\alpha \sin\theta = l_3 \\
& \alpha_1 = l_3 \sin\alpha \sin\theta + l_2 \cos\alpha \sin\theta = l_3 \\
& \alpha_2 = l_3 \sin\alpha \sin\theta + l_2 \cos\alpha \sin\theta = l_3
\end{align*}
\]
(15)

از ارزیابی هر یک از لنگه به صورت رابطه (16) تعريف می‌شود.

\[
V_1 = V_2 + V_3
\]
(16)

با استفاده از دو ارزیابی لنگه و ارزیابی پتانسیل بدست می‌آید.

\[
L = T - V
\]
(17)

با استفاده از دو ارزیابی لنگه و ارزیابی پتانسیل بدست می‌آید.

\[
L = \frac{1}{2} \left((m_1 l_1^2 + l_1 + m_2 l_2^2)^2 + \\
+ (m_2 l_2^2 + l_2) \alpha^2 + (m_3 l_3^2 + l_3) \phi^2 \right)
\]

\[
\times + m_2 l_1 L_1 \cos(\theta - \phi) - (m_1 g l_1 + m_2 l_2) \sin(\theta + \phi) = 0
\]
(18)

که در مورد انرژی پتانسیل مکانیزم چهار لنگه طبق معادله (19) می‌باشد.

\[
\begin{align*}
& y_1 = L_1 \sin\theta \\
& y_2 = L_2 \sin\alpha \sin\theta + l_2 \cos\alpha \sin\theta = l_3 \\
& y_3 = L_3 \cos\phi
\end{align*}
\]
(19)

از ارزیابی هر یک از لنگه به صورت رابطه (20)

\[
L = \frac{1}{2} \left((m_1 l_1^2 + l_1 + m_2 l_2^2)^2 + \\
+ (m_2 l_2^2 + l_2) \alpha^2 + (m_3 l_3^2 + l_3) \phi^2 \right)
\]

\[
\times + m_2 l_1 L_1 \cos(\theta - \phi) - (m_1 g l_1 + m_2 l_2) \sin(\theta + \phi) = 0
\]
(20)

4-2- استخراج معادلات حرکت در ارایه کنترل لنگه

براساس روش لگاریتم، با استفاده از معادله آنالوگی معنی‌پذیرکننده، با استفاده از لگاریتم نسبت به راست بخش این معادلات حرکت مکانیزم از رابطه (21) بدست می‌آید.

\[
\frac{dL}{d\theta} - \frac{dL}{d\alpha} = \tau
\]
(21)

طبق رابطه (8) و (9)، راه‌های \(\theta, \alpha\) به حساب \(\theta, \alpha\) در لغزش و \(\theta, \alpha\) به حساب \(\theta, \alpha\) در لغزش می‌باشند.

همچنین طبق رابطه (20) معادلات لگاریتمی بر حساب \(\theta, \alpha\) است.

با استفاده از معادله (22) را نتیجه می‌دهد.

\[
\frac{dL}{d\theta} = \frac{dL}{d\theta} + \frac{dL}{d\phi} \frac{d\phi}{d\theta} + \frac{dL}{d\alpha} \frac{d\alpha}{d\theta}
\]

(22)

\[
\frac{dL}{d\theta} = \frac{dL}{d\theta} + \frac{dL}{d\phi} \frac{d\phi}{d\theta} + \frac{dL}{d\alpha} \frac{d\alpha}{d\theta}
\]

(23)

با اخذ هیلمنکروی را می‌شیم که به عبارت‌های دیگر نام‌گذاری (40) باید به

\[H(x, t) = \frac{1}{2} \mathbf{u}^T \mathbf{U} \mathbf{u} \]

در این معادله نماد \(\mathbf{u} \) مقادیم بهینه را نشان می‌دهد حال با توجه به دنیا به صورت رابطه (41) که هم‌به‌هم با کنترل کنترل را نتیجه می‌دهد با استفاده از معادله (39) قانون کنترل بهینه به صورت معادله (42) به دست می‌آید.

\[L = \frac{1}{2} \mathbf{u}^T \mathbf{U} \mathbf{u} \]

\[u = -x_4 \mathbf{M}^{-1} (x_3) \]

\[u = \left\{ \begin{aligned} u &> y^+ & \text{در صورت وجود محدودیت روی کنترل، با استفاده از معادله (40) قانون کنترل بهینه به صورت معادله (43) باید می‌شود} \\
&\leq u \leq y^+ & \\
&u < y^- \end{aligned} \right. \]

\[x_1 = x_2 \]

\[u = x_2 \mathbf{M}(\theta)^{-1} (u - C(\theta, \theta) - G(\theta)) \]

\[x_4 = \left(\begin{array}{c} \frac{\partial H}{\partial \theta} + \frac{\partial \mathbf{u}^T}{\partial \theta} \end{array} \right) \]

\[L = 1 \]

3-استخراج شرایط لازم بهینه

برای بایان حالت کنترل بهینه، در اینجا لازم است معادلات دینامیکی سیستم به فرم حالت حالت نوشت شود به منظور با توجه به دنیا بردار کنترل

\[x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \]

\[u = \left[\begin{array}{c} x_3 \\ x_4 \end{array} \right] \]

\[x = \frac{x_1}{x_2} \frac{x_2}{x_2} \]

\[u = (u - C(\theta, \theta) - G(\theta)) \]

\[\psi = \left(\begin{array}{c} \frac{\partial H}{\partial \theta} \\ \frac{\partial \mathbf{u}^T}{\partial \theta} \end{array} \right) \]

\[L = u \mathbf{u}^T \]

\[\psi = -\frac{\partial H}{\partial \theta} \]

\[\psi = -\frac{\partial \mathbf{u}^T}{\partial \theta} \]

\[x_4 = M(x_1) - x_2 u \]

\[x_1 = x_2 \mathbf{M}(\theta)^{-1} (u - C(\theta, \theta) - G(\theta)) \]

\[x_1 = x_2 \mathbf{M}(\theta)^{-1} (u - C(\theta, \theta) - G(\theta)) \]

\[x_4 = \left(\begin{array}{c} \frac{\partial H}{\partial \theta} + \frac{\partial \mathbf{u}^T}{\partial \theta} \end{array} \right) \]

\[u = (u - C(\theta, \theta) - G(\theta)) \]

\[\psi = \left(\begin{array}{c} \frac{\partial H}{\partial \theta} \\ \frac{\partial \mathbf{u}^T}{\partial \theta} \end{array} \right) \]

\[L = u \mathbf{u}^T \]

\[\psi = -\frac{\partial H}{\partial \theta} \]

\[\psi = -\frac{\partial \mathbf{u}^T}{\partial \theta} \]
Algorithm of the time optimal calculation

\[\text{PreSol} = \begin{cases} x_{1\text{pre}} & \text{if } t < t_f \\ x_{2\text{pre}} & \text{if } t_f < t < t_{f+} \\ x_{3\text{pre}} & \text{if } t = t_{f+} \end{cases} \]

- 5. Algorithm of the time optimal calculation

In this section, we consider the time optimal control problem for a system with three state variables. The goal is to find the optimal control inputs that minimize a given cost function subject to the system dynamics and constraints.

\[\begin{align*}
 x_1' &= f_1(x_1, x_2, x_3, u_1, u_2) \\
 x_2' &= f_2(x_1, x_2, x_3, u_1, u_2) \\
 x_3' &= f_3(x_1, x_2, x_3, u_1, u_2)
\end{align*} \]

Subject to the constraints:

\[\begin{align*}
 x_1(0) &= x_{10} \\
 x_2(0) &= x_{20} \\
 x_3(0) &= x_{30} \\
 x_1(T) &= x_{1f} \\
 x_2(T) &= x_{2f} \\
 x_3(T) &= x_{3f}
\end{align*} \]

The control inputs are bounded:

\[u_1(0) \leq u_1(t) \leq u_{1f}, \quad u_2(0) \leq u_2(t) \leq u_{2f} \]

The cost function to be minimized is:

\[J = \int_{0}^{T} L(x(t), u_1(t), u_2(t)) dt \]

The optimal control problem can be solved using the Pontryagin's Maximum Principle or other optimization techniques.

Fig. 2 Algorithm of the time optimal calculation

\[\begin{align*}
 \text{Algorithm 1:} & \\
 & \text{Initialize: } x_0, u_{min}, u_{max} \text{ and the initial guess } u_0 \text{ for the control input.} \\
 & \text{Calculate: } L(x(t), u(t)) \text{ along the trajectory.} \\
 & \text{Minimize: } J = \int_{0}^{T} L(x(t), u(t)) dt \text{ subject to the system dynamics and constraints.} \\
 & \text{Update: } u(t) \text{ using a numerical optimization method.} \\
 & \text{Repeat: } \text{until convergence.}
\end{align*} \]
شکل 4 موقعیت راپید اول بر حسب زمان

شکل 5 سرعت راپید موقعیت اول بر حسب زمان

جدول ۱ پارامترهای مورد بررسی به مکانیزم چهار لنکی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>لنک اول</th>
<th>لنک دوم</th>
<th>لنک سوم</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>2.5</td>
<td>4</td>
<td>1</td>
<td>kg</td>
</tr>
<tr>
<td>kgm²</td>
<td>0.5208</td>
<td>1.3333</td>
<td>0.0833</td>
<td></td>
</tr>
<tr>
<td>rad</td>
<td>1.2649</td>
<td>0.5533</td>
<td>1.5708</td>
<td></td>
</tr>
<tr>
<td>rad/s</td>
<td>0.9582</td>
<td>0.5368</td>
<td>6.2832</td>
<td></td>
</tr>
<tr>
<td>rad/s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ترکیب</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
انجام می‌گردد. مرحله به مرحله از \(t_f \) به اندازه 0.1 کمی به شدت ناپایدار به شدت به آن است. در هنگام است که گام‌های زمانی کمتر از زمان کمی‌های است. پس مقدار سیم‌دهی به پله کاهش می‌یابد و واقع در تجارب دوربرد مسئله حل می‌شود. حال حالت زمان بهینه با دقت 0.0001 در مرحله مقایسه بهتر با یک تریب در شکل‌های 7 و 10 موقیع‌ها. سخت‌سازی شتاب و جرک مفصل 1 بهتر که در شکل‌های 7 و 10 متوسط می‌باشد. شتاب در زمان حدود \(0.85 t_f \) در پایان نمودار آخر به خوبی ممکن است. همان‌طور که در شکل 10 دیده می‌شود وقتی زمان از همان‌طور که روش منحنی کاراکتری بوده است. \(f_{max} = 0.498688 \) لامیناگهی می‌باشد. جرک مکریم از 300 به 900 افزایش می‌یابد. این نشان می‌دهد که به نزدیک‌ترین نشان به زمان کمی‌های مطلق، مقایسه جرک به سمت بین‌پایین می‌کند.

شکل 11 نشان‌گرفته شده که در شکل 11 مشاهده می‌شود با پرسیدن زمان حركت به زمان بهینه \(\Delta t = 0.498688 s \) می‌توان با پرسیدن حکم گذاری کاملاً حالت بلای یا به همان بگذاری به ویژه می‌کند.

3-6 مسیر بهینه در کمترین زمان با جرک محدود

در این قسمت به بررسی دقت و کارایی الکترونیک ارائه شده در شکل 3 پرداخته می‌شود و بر اساس آن مسیر بهینه با کمترین زمان با جرک محدود

\[t_f = 0.49875 \]

\[t_f = 0.49917 \]

\[t_f = 0.5 \]

\[t_f = 0.6 \]

\[t_f = 0.7 \]

\[t_f = 0.8 \]

\[t_f = 0.9 \]

\[t_f = 1 \]

\[f_{min} = 0.498688 \]
برای مکانیزم چهار لنگهی محاسبه می‌شود کلیه پارامترهای فیزیکی شبه حالت قبل در جدول 1 این شده است شرایط زیر نیز شبه حالت قبل می‌پذیرند: بیشترین مقدار جرک برای کاهش 150 نیتر نور در نظر گرفته می‌شود. مقدار اولیه به صورت:

\[P_{\text{PreSol}} = [0.0, 0.0] \]
\[t_f = 1 \text{s}, e = 0.11, \]
\[ed = 5, J_{k, \text{max}} = 150 \text{ rad/s}^{2} \]

نقاط مذکور موتور در نظر گرفته می‌شود. در شکل 12 مراحل طی شده نشان می‌دهد می‌تواند در حالت اول این دسته‌ای که مقدار اعمال شده 3 نشان داده شده است زمان‌های کاهش حالت اول است. این دسته‌ای که به‌صورت \(f = J_{k, \text{max}} \) نشان داده شده است همچنین زمان‌های کاهش حالت اول، این دسته‌ای که به‌صورت \(f = J_{k, \text{max}} \) نشان داده شده است. همانطور که در شکل 12 دیده می‌شود مدت 12 حالت اول امکان‌پذیر است.

دقت در این مقاله، طراحی مسر زمان به‌پهنه برای مکانیزم چهار لنگه‌ای به‌وسیله گرایش مورد استفاده قرار گرفته است. در این مقاله، طراحی

\[7 \text{ نتیجه‌گیری} \]

برای این مقاله، طراحی مسر زمان به‌پهنه برای مکانیزم چهار لنگه‌ای
کد نوشته شده در متلب می‌تواند نمایش طراحی صدر زمان بهینه بر اساس کورپلیت‌ها و سرعت‌های نیز دارد. با اعمال تکرار شدن زمان حرکت به زمان بهینه مطابق، جرک به تدریج تغییر می‌کند. برای رفع این مشکل، کورپلیت‌ها بهینه شده است که زمان بهینه رد با اعمال محدودیت روز جرک، بدست می‌آید. نهایتاً با شیوه‌سازی (екتیون) صحت محدودیت‌های زمان بهینه و کارایی کورپلیت‌ها بهینه‌تری در ارائه مسیر زمان بهینه و زمان بهینه با محدودیت برای مکانیزم چهار لنکی نشان داده شده است.

clear
tf=1;
sol=bvpinit(linspace(0,1,20),[0 0 0 0]);
ce=1*tf;es=ce;Ed=0001;k=1;s=1;j=0;
while ed<es
 tf=solvebvp(32)
solo=solvebvp(33)
s=1
 if outs==0
 k=1;j=1;tfmin(j)=tf;
 figure(5)
 hold on
 plot(s,tf,'O')
 hold on
 figure (5)
 else
 figure(5)
 hold on
 plot(s,tf,'+')
 hold on
 figure (5)
 end
 k=k+1;
 tf=tf+e;
 e=ek;
 tf=tf+e;
end

کد خروجی tf وکورپلیت نشان داده شده است. در این برنامه، tf معادله‌های مربوط به محدودیت شتاباندن با روش تنها کارکرد ممکن است. tf نشان دهنده برای هر زمان در محدودیت شتاباندن tf می‌گوید که زمان بهینه tf می‌باشد.

 eerste Joint Angular Acceleration (rad/s)
Torque (N.m)
Fig. 15 Angular acceleration of first joint with respect to time

Jerk of First Joint (rad/s)
Fig. 16 Jerk of first joint with respect to time

Optimal torque of first joint with respect to time

Fig. 17 Optimal torque of first joint with respect to time

