Numerical study of a detonation wave structure in annular chamber

Mohammad Farahani*, Mohammad Badrgoltapeh

Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

* P.O.B. 11155-1639 Tehran, Iran, mfarahani@sharif.ir

ABSTRACT

Detonation engines are expected to be used as propulsion system in aerospace applications in the future. Several types of detonation engines are currently under examination, including the rotating detonation engine (RDE). In this work, the feasibility study for design of a laboratory sample RDE which has an annular geometry with diameter of 76 mm has been performed. In this sample, hydrogen and standard air are separately injected into the combustion chamber of detonation engine. First, numerical studies of a detonation wave structure in annular chamber, Modares Mechanical Engineering, Vol. 16, No. 7, pp. 343-352, 2016

Keywords: Rotating Detonation Engine Rotating Detonation Combustion Modeling Geometry Design of RDE 2D simulation of RDE

Please cite this article using:

در مطالعات علمی و آزمایشی، مدل‌های اتاق‌های درون‌یابی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌برداری و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی بررسی شده‌اند. نتایج ثابت گرفته شده که مدل‌های کلاسیک در حالت‌برداری ترکیبی و حالت‌برداری نمونه‌های مختلفی از نظر فیزیکی و مکانیکی به‌صورت ألفونسو تریستین و دیکارت در دهه‌های گذشته مورد استفاده قرار گرفته‌اند. این مدل‌ها به‌وسیلهٔ حالت‌ب
معموماً تأثیر دیفرون و سیستم‌های ویژه بر مرحله شدت است. به این صورت است، اگر رادیو بی‌سیم به محله متفق‌العمل ناهنجاری استفاده نشده باشد و بقیه شبکه‌های دیگر رادیویی در محله برقرار باشند، یک ناحیه رادیویی جدا آنها را تشکیل می‌دهد. در این صورت، شبکه می‌تواند توانسته شود این اتفاق را ثبت نماید. نهایت نتایج به این صورت است که ناهنجاری‌های رادیویی در محله باعث ارائه اطلاعات دقیق و به‌طور قابل قبولی شده است.
3. میدان حجث محاسباتی

همدوزی محاسباتی احتمال جهت انتخاب‌شیوه‌سازی عدیدی شامل ایستگاه حلقه می‌باشد که قطعی فاصله 100 میلی‌متر، قطع داخلی آن 90 میلی‌متر و طول آن 75 میلی‌متر می‌باشد. همکار به صورت مجزا ورود محصول در هیستون، هیدرات آن 90 میلی‌متر با خروج به طرف شکاف حلقه به ضخامت 0.4 میلی‌متر، به داخل محصول تزریق می‌شود. همکاری و جزئیه‌های موجود در شکل 1 ارده است. دیگر هزینه‌های بار و هیدرودریوا در حوزه را کارکرده پایدار، به ترتیب 7.7 و 265 گرم بر ثانیه گزارش شده است.

از آن آمده که فقط خوان دانشی می‌گاز در محیط تولید در نظر گرفته شده. به‌منظور صحیح‌تری، نسبت بایستایی کیستی‌سازی، با استفاده از مدل‌های پارامتری به دست آمده در این مطالعه در نظر گرفته شده است

$$\frac{\partial}{\partial t} \int W dV + \int F dA = \int S dV$$

بردارهای S و $G.F$.در اینجا به صورت رابطه (2) است:

$$W = \begin{bmatrix} p_1 V_1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & p_N V_N & \cdots & 0 \\ \rho & \vdots & \rho & \vdots & \rho \\ \rho v & \vdots & \rho v & \vdots & \rho v \\ \rho E & \vdots & \rho E & \vdots & \rho E \end{bmatrix} \begin{bmatrix} \rho_1 V_1 \\ \vdots \\ \rho_N V_N \\ p \rho u \\ p \rho v \\ p E \end{bmatrix} = \begin{bmatrix} D_1 V_1 \rho_1 \\ \vdots \\ D_N V_N \rho_N \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

(2)

ج. $G = 0$، مدل اول به صورت

$$\frac{\partial}{\partial t} \int W dV + \int F dA = \int S dV$$

(3)

برای مسائل نام‌نگاری حل دیگری با توجه به آن که مدل‌های پارامتری به دست آمده در این مطالعه در نظر گرفته شده است

$$\rho = \sum_{k=1}^{N_k} \rho_k$$

(4)

$$\rho = \sum_{k=1}^{N_k} \rho_k R T$$

(5)

به رابطه (1) به صورت

$$\frac{\partial}{\partial t} \int W dV + \int F dA = \int S dV$$

(6)
4- اجای هندسه دویدی

جهت اجای هندسه دویدی، محیط محروف سببدی به یک مکعب مستطیل دیدی می‌تواند (شکل 2) طول مستطیل برابر بیشتر کنال با احتمال فضایی و عرض مستطیل برابر طول محروف است.

5- شرایط مرزی

ورودی محروف ایجاد با استفاده از شرط مرزی فشار خروجی مدل شده است. شرایط این تابی به شکل دیده نشده می‌باشد. شرایط مرزی محروف از ورودی مونتر نیاز است تا انجام به دقت، فریکتیون تزریق و فشار محروف دویسیگی مدل دکتر است. محروف برای اولین بار در نظر گرفته می‌شود و هوا به فیت سری خروجی برای هدیه به ورودی و دیگر محروف به دست می‌آید. شرایط مرزی محروف از ورودی مونتر نیاز است تا انجام به دقت، فریکتیون تزریق و فشار محروف دویسیگی مدل دکتر است. محروف برای اولین بار در نظر گرفته می‌شود و هوا به فیت سری خروجی برای هدیه به ورودی و دیگر محروف به دست می‌آید.

شکل 4 تابی هندسه سببدی به دویدی

جدول 1 مقایسه فشار کم دریان برای سایر مسایل

<table>
<thead>
<tr>
<th>P_{in} (bar)</th>
<th>T_{in} (K)</th>
<th>u_{in} (m/s)</th>
<th>v_{in} (m/s)</th>
<th>w_{in} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>300</td>
<td>125</td>
<td>0.25 \pm 0.5</td>
<td>0.125 \pm 0.25</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
<td>125</td>
<td>0.25 \pm 0.5</td>
<td>0.125 \pm 0.25</td>
</tr>
</tbody>
</table>

Table 1 Comparison of one-dimensional detonation properties at different grid scales
6. Reaction Path

The reaction path of rotating detonation combustion (RDC) is shown in the figure below. The reaction process involves the following steps:

1. **Reactant Inlet**
 - Reactant at 1 bar and 298 K

2. **Combustion Chamber**
 - Combustion of hydrogen and air
 - Reaction products at 1 bar and 298 K

3. **Rotating Detonation Wave**
 - The rotating detonation wave moves through the chamber, causing the combustion reaction to proceed.

4. **Combustion Products Outlet**
 - The combustion products exit the chamber at 1 bar and 298 K.

The reaction process is governed by the following thermodynamic equations:

\[
P_{\text{ef}} = P_0 \left(\frac{T_{\text{ef}}}{T_{\text{in}}} \right) \left(\frac{P_{\text{in}}}{P_{\text{ef}}} \right)
\]

where:
- \(P_{\text{ef}} \) is the final pressure
- \(P_0 \) is the initial pressure
- \(T_{\text{ef}} \) is the final temperature
- \(T_{\text{in}} \) is the initial temperature
- \(P_{\text{in}} \) is the initial pressure
- \(P_{\text{ef}} \) is the final pressure

The reaction path proceeds through a series of reactions, including the combustion of hydrogen and air, which is represented by the following chemical equation:

\[
\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{energy}
\]

The combustion process is exothermic, releasing a significant amount of energy. The reaction path is illustrated in the figure below, showing the temperature and pressure profiles along the reaction path.

7. Table of Properties

<table>
<thead>
<tr>
<th>Region</th>
<th>Temperature (K)</th>
<th>Pressure (bar)</th>
<th>Mass Flow Rate (g/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Chamber</td>
<td>2980</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>Combustion Products Outlet</td>
<td>298</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

8. Graphical Representation

The graphical representation of the reaction path is shown in the figure below, illustrating the temperature and pressure profiles along the reaction path.

9. Key Points

- The reaction path proceeds through a series of reactions, including the combustion of hydrogen and air.
- The reaction process is exothermic, releasing a significant amount of energy.
- The graphical representation illustrates the temperature and pressure profiles along the reaction path.

1. **Notes**
 - The reaction process involves the combustion of hydrogen and air, producing water and heat.
 - The reaction path is represented in the figure below, showing the temperature and pressure profiles along the reaction path.

Table 2: Different region properties for the initial conditions

<table>
<thead>
<tr>
<th>Region</th>
<th>Temperature (K)</th>
<th>Pressure (bar)</th>
<th>Mass Flow Rate (g/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Chamber</td>
<td>2980</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>Combustion Products Outlet</td>
<td>298</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Figure 5: Initiation strategy for 2D case

- **Shaped Inlet**
 - The shaped inlet is designed to initiate the rotating detonation wave, providing a controlled environment for the reaction to proceed.

Figure 6: Combustion Products Outlet

- The combustion products outlet is designed to expel the reaction products, maintaining a controlled environment for the reaction to proceed.

Figure 7: Key Points

- The key points are represented in the figure below, showing important aspects of the reaction process.

Figure 8: Graphical Representation

- The graphical representation is shown in the figure below, illustrating the temperature and pressure profiles along the reaction path.

Figure 9: Notes

- The notes are provided in the text, summarizing the key aspects of the reaction process.

Table 3: Properties of Reactants and Products

<table>
<thead>
<tr>
<th>Reactant/Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)</td>
<td>0.5</td>
</tr>
<tr>
<td>O(_2)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Equation 12

\[
P_{\text{ef}} = P_0 \left(\frac{T_{\text{ef}}}{T_{\text{in}}} \right) \left(\frac{P_{\text{in}}}{P_{\text{ef}}} \right)
\]

Equation 13

\[
\text{H}_2 + 0.5\text{O}_2 \rightarrow \text{H}_2\text{O}
\]

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
<th>ρ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1.4075</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>1.4073</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.4076</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fig. 10 Designed RDE geometry

Fig. 11 Velocity Vector

Fig. 9 Detonation-shock combined wave

Fig. 12 Designed RDE geometry

Fig. 13 Detonation-shock combined wave

Fig. 14 Velocity Vector

Fig. 15 Streamlines

Table 3 Injection pressure and injected mixture properties in numerical simulation for various equivalence ratio

<table>
<thead>
<tr>
<th>R_{mix}</th>
<th>γ_{mix}</th>
<th>ϕ_{mix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.48143</td>
<td>397.69</td>
<td>1</td>
</tr>
<tr>
<td>1.44105</td>
<td>376.29</td>
<td>0.65</td>
</tr>
<tr>
<td>1.52029</td>
<td>418.85</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Detonation parameters for different chamber length

<table>
<thead>
<tr>
<th>P_{max} (bar)</th>
<th>T_{max} (K)</th>
<th>U_{det} (m/s)</th>
<th>d (mm)</th>
<th>T (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.62631</td>
<td>3185</td>
<td>1168</td>
<td>19.142</td>
<td>50.75</td>
</tr>
<tr>
<td>20.29044</td>
<td>3271</td>
<td>1250</td>
<td>19.741</td>
<td>101.5</td>
</tr>
<tr>
<td>21.58263</td>
<td>3465</td>
<td>1420</td>
<td>21.667</td>
<td>203</td>
</tr>
</tbody>
</table>

Detonation wave parameters for different equivalence ratios

<table>
<thead>
<tr>
<th>P_{max} (bar)</th>
<th>T_{max} (K)</th>
<th>U_{det} (m/s)</th>
<th>d (mm)</th>
<th>T (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.29044</td>
<td>3271</td>
<td>1250</td>
<td>19.741</td>
<td>101.5</td>
</tr>
<tr>
<td>18.93272</td>
<td>2960</td>
<td>1132</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>19.53543</td>
<td>3232</td>
<td>1210</td>
<td>0.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

