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 In this paper, free vibration of rotating microbeams based on the strain gradient theory and Euler-
Bernoulli beam assumptions is investigated. The Hamilton's Principle is applied on the attained strain 
and kinetic energy relations to obtain the equations of motion for the rotating microbeam. Then, by 
employing the adimensional parameters, the nondimensional form of the equations of motion is derived. 
After that, by applying the Galerkin approach on the dynamic equations of motion, the flapping and 
axial natural frequencies are calculated. Subsequently, the current results are validated by the existed 
papers results. After validation of the present results, the effects of the thickness to the material length 
scale parameter ratio, rotation speed and Poisson's coefficient on the flapping and axial frequencies are 
studied and the strain gradient theory results are compared with the modified couple stress and classical 
theories. The results show that the type of theory that is appointed has essential effects on the predicted 
natural frequencies. The effect of rotation speed on the possibility of the occurrence of internal 
resonances is also examined. In addition, for the first time, the effect of different mentioned theories on 
the axial natural frequencies are inspected. The presented results illustrate that, by considering the strain 
gradient theory, varying the Poisson's coefficient changes the axial frequencies, while the modified 
couple stress and classical theories are ineffectual in predicting any variations on the axial frequencies 
and the mentioned theories predict the same results for axial frequencies. 
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Fig. 1 A schematic of a rotating microbeam [29] 
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Table 1 Current first three flapping and axial mode frequencies in 
comparison with those of [30] ( ) 

  ] 30[ 
 114.51 114.46 

 280.41 280.34 
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 3997.68 4003.17 

 11996.7 11998.53 

 19994.98 19996.08 

2 ]   6[  
Table 2 Material and geometric properties of micro cantilever beam 
made of epoxy [6] 

l (µm)   ( ) E (GPa) 
17.6 0.38  1000 1.44 
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Table 3 Current first three flapping mode frequencies in comparison 
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Table 4 Current first two adimensional flapping mode frequencies in 
comparison with those of [28] 
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Fig. 2 Effect of the thickness to the material length scale ratio on the 
first flapping frequency of the rotating microbeam 
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Fig. 3 Effect of the thickness to the material length scale ratio on the 
second flapping frequency of the rotating microbeam 
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Fig. 4 Effect of the thickness to the material length scale ratio on the 
third flapping frequency of the rotating microbeam 
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Fig. 5 Effect of the thickness to the material length scale ratio on the 
ratio of the first flapping frequency predicted by strain gradient theory 
and modified couple stress theory to that calculated based on the 
classical theory of the rotating microbeam 
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Fig. 6 Effect of the thickness to the material length scale ratio on the 
ratio of the second flapping frequency predicted by strain gradient 
theory and modified couple stress theory to that calculated based on the 
classical theory of the rotating microbeam 
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Fig. 7 Effect of the thickness to the material length scale ratio on the 
ratio of the third flapping frequency predicted by strain gradient theory 
and modified couple stress theory to that calculated based on the 
classical theory of the rotating microbeam 
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Fig. 8 Effect of non-dimensional rotation speed of the microbeam on 
the first flapping frequency  
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Fig. 9 Effect of non-dimensional rotation speed of the microbeam on 
the first axial frequency 
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Fig. 10 Possibility of 1:1 (between the second flapping and the first 
axial modes) and 3:1 (between the first flapping and the first axial or 
second flapping modes) internal resonances for the rotating microbeam 
predicted by, respectively, the strain gradient, modified couple and 
classical theories 

10 1:1 ) 
1:3  ( )
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Fig. 11 The Poisson's effect on the first flapping frequency of the 
rotating microbeam 

11  

 

Fig. 12 The Poisson's effect on the ratio of the first axial frequency 
predicted by strain gradient theory and modified couple stress theory to 
that calculated based on the classical theory of the rotating microbeam 
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