Numerical investigation of energy separation in a low pressure vortex tube under different axial angles of injection nozzles

N.pourmahmoud1*, A. Jahangir Amini2, A. Hassanzadeh3, S.A. Izadi2

1- Assoc. Prof., Mech. Eng., Urmia Univ., Urmia, Iran
2- MSc. Student, Mech. Eng., Urmia Univ., Urmia, Iran
3- PhD. Student, Mech. Eng., Urmia Univ., Urmia, Iran
* P.O.B. 165 Urmia, Iran. n.pormahmod@urmia.ac.ir

Abstract- In this article, effect of axial angle of injection nozzles on the flow field structure in a Low-Pressure vortex tube has been investigated by computational fluid dynamics (CFD) techniques. Numerical results of compressible and turbulent flows are derived by using the standard k-ε turbulence model. The dimensions of studied vortex tubes are kept the same for all models and the performance of machine is studied under 6 different axial angles (β) of nozzles. Achieving to a minimum cold exit temperature is the main goal of this numerical research. Our investigation shows that utilizing this kind of nozzle changes the energy separation and flow characteristic. Considering total pressure of cold flow, a new parameter, ξ is defined and results shows that changing the amount of ξ can affect the cold exit temperature directly. Finally, some results of the CFD models are validated by the available experimental data which show reasonable agreement.

Keywords: Vortex Tube, Axial Angle, Energy Separation, ξ , Numerical Simulation.
بررسی عددی جدایی انرژی در ورتنکس تیوب

1- مقدمه

2- مدل عددي و معادلات حاکم

مدل عددی مورد بررسی از روی مدل آزمایشگاهی اسکای و همکاران [7] ساخته شده است. این مدل جهت به 6 نازل مستقیم ورتنکس هوا، یک خروجی گرم و یک خروجی سرد است. در این مقاله علاوه بر مدل اسکای و همکاران [7]، 5 مدل دیگری که با زیادای مختلف محوری نسبت به راستای ورود جریان تجویز شده‌اند بررسی می‌شود.

همچنین ابعاد هندسی دقیق مربوط به ورتنکس تیوب در حداک 0.7 ارائه شده است. این ابعاد برای همه مدل‌ها نتایی در نظر گرفته شده است.

شکل 2: شکل‌بندی مسأله برای ورتنکس تیوب در حداک 6 نازل مستقیم

شکل 1: ناحیه حاوی عدد ها و ناحیه هاوی عدد ها بررسی عددی جدایی انرژی در ورتنکس تیوب...
بررسی عددی جدایی انرژی در ورتکس نیوترون
نادر پورهحوود و هوکاریان

\[\frac{\partial}{\partial x_j} \left[u_i \rho \left(h + \frac{1}{2} \bar{u}_j \bar{u}_j \right) \right] = \frac{\partial}{\partial x_j} \left[k_{\text{eff}} \frac{\partial T}{\partial x_j} + u_i (\tau_{ij})_{\text{eff}} \right] \]
& \quad k_{\text{eff}} = K + \frac{g_{\rho T}}{Pr_t} \quad (4)

علاوه بر معادلات فوق، باعث موارد روابط به مدل توربولانس به عنوان یک نیرو، عدد هم‌مان انرژی نیوترون در ورتکس تیوب‌ها تشکیل می‌شود.

\[\frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_j} (\rho k u_j) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu}{\sigma_d} \right) \frac{\partial k}{\partial x_j} \right] + G_k + G_b - \rho e - Y_M \]
& \quad \frac{\partial}{\partial t} (\rho e) + \frac{\partial}{\partial x_j} (\rho e u_j) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu}{\sigma_d} \right) \frac{\partial e}{\partial x_j} \right] + C_{1k} \frac{\varepsilon}{k} (G_k + C_{2k} G_b - C_{3k} \rho \varepsilon^2) \quad (5)

\[k_{\text{eff}} = K + \frac{g_{\rho T}}{Pr_t} \quad (4)

\[k_{\text{eff}} = K + \frac{g_{\rho T}}{Pr_t} \quad (4)

\[\rho_{\text{eff}} = \rho + \frac{\rho_{\text{mix}}}{\varepsilon} \quad (4)

\begin{align*}
\text{جدول 1 اعداد هندسی ورتکس نیوترون مدل‌شنده} \\
\begin{array}{|c|c|}
\hline
\text{پارامتر} & \text{مقدار} \\
\hline
\text{طول لوله} & 106 \text{ (mm)} \\
\text{قطر لوله} & 114 \text{ (mm)} \\
\text{دیسپلاستیک مقطع کلی} & 96/7 \text{ (mm²)} \\
\text{قطر نازل} & 1/41 \text{ (mm)} \\
\text{قطر هیمالیا} & 0/2 \text{ (mm²)} \\
\text{قطر جذبیتی سرد} & 0/5 \text{ (mm²)} \\
\text{قطر جذبیتی گرم} & 95 \text{ (mm²)} \\
\hline
\end{array}
\end{align*}

در حال حاضر، اعداد هندسی ورتکس نیوترون مدل‌شنده، با استفاده از استفاده از ترکیبی که در تحقیقات بین‌المللی به کار رفته، برای این‌که جراحی همدفع ویژه در ورتکس نیوترون، دیسپلاستیک کلی و قطعات ویژه در معادلات برای درست کردن نیرو به مدل توربولانس به عنوان یک نیرو، عدد هم‌مان انرژی نیوترون در ورتکس تیوب‌ها تشکیل می‌شود.

\[\frac{\partial}{\partial t} (\rho p) + \frac{\partial}{\partial x_j} (\rho u_j) = 0 \]
& \quad \frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j - \tau_{ij}) = -\frac{\partial p}{\partial x_i} \quad (2)

\[p = \rho RT \]

1. Fluent

\[\mu = \rho C_{\mu} \varepsilon \frac{k}{\varepsilon} \quad (7) \]

شرايط مزمن سالم به اساس اعمال مي‌شويد.

\[\text{بنابراین:} \quad \rho = \rho_{\text{mix}} \quad (4) \]

\[\text{کلاسون و برای سایر حالات به صورت فشار و در مقدار خروجی 1/42} \text{ با همان دامنه می‌باشد.} \]

\[\text{سرع را شرط مزمن فشار ثابت خروجی مطلوب مدل تغییر ندارد.} \]

\[\text{برای نظر می‌گردد که فرم گرم را به صورت بیرون و در نظر می‌گیریم و مقدار آن را تغییر می‌دهم تا نسبت دی این خروجی، نورتر از استقلال هستند و گرم بسته باشد.} \]

\[\text{اینگونه می‌تواند برای انتخاب اثر اغتشاش به کار رود. مطالعات ما نشان داده است که مدل توربولانس که بهتر از طریق مدل رایگان انتخاب شده باشد در این مطالعات سعی دارد به مدل جریان باقی بیشتر باقی بماند.} \]

\[\frac{\partial}{\partial x_j} (\rho \bar{u}_j) = 0 \quad (1) \]

\[\frac{\partial}{\partial x_j} (\rho \bar{u}_i + \bar{u}_j \bar{u}_j) = -\frac{\partial p}{\partial x_i} \quad (2) \]

\[p = \rho RT \quad (3) \]

\[\text{در جهت بیشتر شکل در ورتکس نیوترون مدل‌شنده.} \]

شکل 2-3 شکل‌های میدان حر برای ورتکس نیوترون یاد نازل هایی

با زاویه‌های مختلف

\[\text{مدل عددی ورتکس نیوترون مدل‌شنده، با استفاده از استفاده از} \]

\[\text{ترکیبی که در تحقیقات بین‌المللی به کار رفته، برای این‌که جراحی همدفع ویژه در ورتکس نیوترون، دیسپلاستیک کلی و قطعات ویژه در معادلات برای درست کردن نیرو به مدل توربولانس به عنوان یک نیرو، عدد هم‌مان انرژی نیوترون در ورتکس تیوب‌ها تشکیل می‌شود.} \]

\[\text{برای نظر می‌گردد که فرم گرم را به صورت بیرون و در نظر می‌گیریم و مقدار آن را تغییر می‌دهم تا نسبت دی این خروجی، نورتر از استقلال هستند و گرم بسته باشد.} \]

\[\text{اینگونه می‌تواند برای انتخاب اثر اغتشاش به کار رود. مطالعات ما نشان داده است که مدل توربولانس که بهتر از طریق مدل رایگان انتخاب شده باشد در این مطالعات سعی دارد به مدل جریان باقی بیشتر باقی بماند.} \]

\[\frac{\partial}{\partial x_j} (\rho \bar{u}_j) = 0 \quad (1) \]

\[\frac{\partial}{\partial x_j} (\rho \bar{u}_i + \bar{u}_j \bar{u}_j) = -\frac{\partial p}{\partial x_i} \quad (2) \]

\[p = \rho RT \quad (3) \]
بررسی عددی جدایی ارزی در ورتکس تیوب...

بررسی مدل‌های توربولانس
مدل در نظر گرفته شده که مدل سه‌بعدی چرخشی با تقارن محوری است که مدل‌های توربولانس کی اپسیلون (k-ε) برای شبیه‌سازی شش‌شکن جریان آن به کار گرفته شده است. این نوع مدل‌های توربولانس در مدل‌سازی به‌دقت جدایی ارزی از جریان چرخشی و تراکم‌پذیر در ورتکس تیوب قابل بررسی باشد. مقایسه نتایج حاصل از مدل‌سازی عدید حاضر تظیف خوب مدل توربولانس k-ε را با نتایج آزمایشگاهی نشان می‌دهد. برای مدل‌سازی مدل‌های دیگر توربولانس نظیر RNG k-ε و RSM نیز سعی شد که برای حذف مدل توربولانس ۴-۶ از شکل‌های ۴ و ۵ جدایی دما به دست آمده با مدل‌های TURBOLANSE بنا تا آزمایشگاهی اسکالار و همکاران [7] مقایسه شده است. به‌طوری که تعادل مقدار نسبت جرمی در خروجی سرد غزارش شده است. همان طور که در شکل ۴ نشان داده شده، نتایج تغییرات مقادیر صدای نشان می‌دهد. مدل ۶ بهترین تظیف را با داده‌های جدایی suspicious دارد. این نتایج به روش داده‌های داده‌های دما از داده‌های تغییرات بدست آمده از طریق در سه‌یک دان از تغییرات بهبود گرم در کمترین جدایی در خروجی گرم مشاهده می‌شود. با افزایش نسبت جرمی در خروجی سرد، جدایی دما در ناحیه خروجی گرم که یک سیر نسبت افزایش می‌یابد به طوری که در نسبت گرم ۸۱ در خروجی سرد، دما در خروجی گرم تا ۷۳۶ کلوین افزایش می‌یابد. دما حاصل از مدل عدید در خروجی سرد از کمترین کسر گرم تا حدود ۵۷ کلوین است که با افزایش در میزان نسبت جرمی در خروجی سرد تا ۵۰ کلوین کاهش می‌یابد از...

1. Cold Mass Fraction

شکل ۴ دما خروجی گرم برای مدل‌های مختلف توربولانس
شکل ۵ دما خروجی سرد برای مدل‌های مختلف توربولانس

این نقطه به بعد افزایش نسبت در خروجی سرد، با افزایش دما در این ناحیه همراه است.

نادر پورهحوود و هوکاراى مهندسی مکانیک مدرس، مهر ۱۳۹۱، دوره ۲۹ شماره ۷/۶۷...
بررسی عددی جدايش انرژی در ورتکس تیوب ...

شکل ۶ مطالعه استقرار از مس بینی بر مبنای حداکثر دما

در نتیجه بحث به پایداری و نیت شدن تقربی نتایج که

استقرار نتایج تحلیل را از تأثیرات مس بینی نشان می‌دهد.

برای کاهش زمان محاسبات از همان تعداد عصر استفاده شده

است. همچنین برای بررسی مدل‌های دیگر سعی بر استفاده از

عصرهای با حجم متوسط عصرهای مدل بررسی شده برای

استقرار از مس بینی شده است.

۵- تأثیر زاویه محوری نازل

۵-۱- دما خروجی‌های سرد و گرم

بررسی‌های قبلی انجام‌شده در زمینه شکل نازل‌ها بیان

می‌کنند که شکل نازل باید به‌گونه‌ای باشد که هوا به‌صورت

مماسی وارد محیط مصرف خش‌های خشودتا سرعت خش‌های بالاتر و

به دنبال آن انتقال موسمی به داخل محفظه و میدان سیال

بیشتر شود. در این تحقیق علاوه بر در نظر گرفتن این نکته،

سعی در طراحی یک نوع نازل مناسب شده است. به نوعی که

این نوع نازل باعث انتقال ناحیه بیشتری از انتهای نازل و ابتدا

ورود به محفظه بیشتری از سطح داخل محفظه می‌شود. این

امکان‌ها دما در خروجی سرد در پی دارد.

شکل ۷ دما خروجی سرد را به بیان زاویه مختلف نازل

(β) برای انواع فشارهای واردی نشان می‌دهد. همان طور که

مشاهده می‌شود، به ازای ۰= β، کمترین دما خروجی سرد

به ازای انواع ورودی و دما مختلف (ه) نقطه کاری اسکای و

همکاران [۷] پایین ۴/۸یر (بار) و با انواع فشار ورودی در همه انواع نازل‌ها، کاهش دما به‌صورت پیوسته

مشاهده می‌شود.

شکل ۸ دما خروجی گرم به ازای فشارهای ورودی و زاویه‌های مختلف

...
بررسی عددی جدایی انرژی در ورتکس تیوب

نادر پورهحوود و هوکاراى

مهندسی مکانیک مدرس، مهر 1391، دوره 29 شماره 7

همان طور که در شکل 7 مشاهده می‌شود برای رابط زاویه 10 درجه دمای خروجی سرد نسبت به زاویه 8 درجه روند نزولی دارد. لذا باید بررسی اینکه آیا با افزایش زاویه به مقدار بیش از 10 درجه می‌توان به دمای سردرد سمت یافته زاویه 10 درجه دمای مطالعه قرار گرفته و در نسبت خروجی 3/0 و دیگر جریان ورودی 6/37 گرم بر ثانیه و فشار 12/4 بار برای جریان سیال ورودی دماهای خروجی سرد و گرم دستگاه به ترتیب برابر 23/625 گرم و 232/2 گرم خواهد بود. اما آنچه در این مورد قابل بحث است ایجاد جریان بازگشتی در روند حل این مسئله است. بدین ترتیب ایجاد جریان بازگشتی در حل عددی مثال‌های مربوط به دستگاه ورتکس تیوب سیال مشاهده می‌شود.

1. اکسای و همکاران (1971) نیز در مقاله خود وجود جریان بازگشتی را گزارش داده‌اند. جریان بازگشتی با ایجاد تغییر و درگذشتن کردن الگوی جریان در نزدیکی خروجی سرد و دبی ایجاد اختلافات افزایشی جریان خروجی و در نتیجه کاهش جدایی ممایی در خروجی سرد و خواهد شد.

در حالی که عناصر مطلوب در ورتکس تیوب به دست آوردن دمای بینی در خروجی سرد ایجاد نمی‌شود. در ناحیه منابع ارتفاع خروجی سرد، جهت جریان به طرف داخل است. در حالی که در کناک‌ها جریان به طرف خارج است. این مسئله باعث ایجاد ضرر رانده‌شدن جریان جدایی سرد به طرف داخل ورتکس تیوب و اختلاف جریان گرم به سرد شده و سپس به صورت افزایش دما در خروجی سرد خواهد داد. شکل 9 شماتیک دمای خروجی بر حسب سرعت محوری در خروجی سرد و ورتکس تیوب نشان می‌دهد.

شکل 9: پیده جریان بازگشتی برای مدل با زاویه $\beta = 12^\circ$

شکل 10: کانتر توزیع عدد میان در دمای خروجی جریان.

1. Subsonic
2. Supersonic
3. Shock
کم و قابل صرف نظر کردیم، لذا با مقایسه همزمان نمودارهای سرعت چرخشی و پرتو در دو کل می‌توان دید که ناحیه با دمای بالایی سرد منطبق بر ناحیه با سرعت چرخشی بسیار بالایی یا همان هسته مرکزی ورتکس نیب است. علاوه بر این مشاهده می‌شود که مقادیر سرعت‌های چرخشی برای دو حالت بدون زاپه و زاپه ۴ درجه تغییر محسوسی ندارند.

شکل ۱۱ کانتور توزیع عدد ماه در محفظه چرخشی $\beta = 0^\circ$.

از دیگر مزایای ایجاد زاپه محوری، کاهش فشار در پای نازل‌های تریک در اثر زاپه دادن به آنها است. در شکل‌های ۱۲-الف و ۱۲-ب مقایسه‌ای بین فشار کل دال خاکه در حالت‌های صفر و چهاردرجه انجام شده است. مشاهده می‌شود که با ایجاد زاپه در نازل‌های تریک، فشار کل مزگ‌دهی در پای نازل‌ها از محدوده ۴۸۰۰ تا ۴۸۰۰ پاسکال به محدوده ۴۵۷۰۰ تا ۴۵۷۰۰ پاسکال کاهش می‌یابد. این کاهش فشار در پای نازل‌های تریک، کاهش عدد ماه در محفظه چرخشی و در نتیجه یک‌نواخت نرم در جریان در ناحیه خروجی سرد را در پی خواهد داشت.

شکل ۱۲-الف توزیع فشار کل در سرتاسر ورتکس نیب.

شکل ۱۲-ب توزیع فشار کل در سرتاسر ورتکس نیب.

شکل ۱۳ توزیع دمای کل در سرتاسر ورتکس نیب $\beta = 40^\circ$.

شکل ۱۳ توزیع دمای کل در سرتاسر ورتکس نیب $\beta = 30^\circ$.

شکل ۱۱ وب‌سایت توزیع دمای کل در سرتاسر سربار $\beta = 40^\circ$.

۵-کانتورهای دما و سرعت‌های چرخشی

شکل ۱۲ مربوط به کانتور توزیع دمای کل در سرتاسر دوره برای مدل $\beta = 40^\circ$ است. مزگ‌دهی مقداری برای دان کل، در نزدیکی دیواره ورتکس نیب ملاحظه می‌شود. همچنین در این شکل افزایش دما در جهت شعاعی و به طرف دیواره ورتکس تیبو دیده می‌شود. باید متذکر شد ضخامت نواحی ی که با رژیم گردآوری‌های آزاد هدایت می‌شوند در میان جریان سیار کم است. بنابراین بطور ساده در ورتکس نیب با رژیم گردآوری‌های اجباری هدایت می‌شود که در این نواحی مقدار سرعت با شعاع رابطه مستقیم دارد [۱۶]. شکل‌های ۱۴-الف و ۱۴-ب نمودار نگب‌های سرعت چرخشی که در راستای شعاعی و در مقطع طولی مختلف از دستگاه برای حالت بدون زاپه و $\beta = 30^\circ$ نشان می‌دهد با توجه به این نمودارها می‌توان ۴۴-دید که در هسته مرکزی ورتکس نیب سرعت چرخشی بسیار

1. Swirl Velocity
بررسی عددی جدایی انرژی در ورتکس تیوب

نادر پورهحوود و هوکار

مهندسی مکانیک مدرس، مهر 1391، دوره 29 شماره 7

شکل ۱۴-الف- تغییرات سرعت چرخشی در راستای شعاعی در مقاطع طولی مختلف.

شکل ۱۴-ب- تغییرات سرعت چرخشی در راستای شعاعی در مقاطع طولی مختلف.

شکل ۱۵- خطوط مسیر برای عنصرهاي از سیال برحسب دامد کل برای ورتکس تیوب با $\beta=45^\circ$.

این مسأله در اثر تبدیل انرژی جنبشی در دهانه سیال به انرژی گرمایی به طور خاص و نشان بخشی اصطکاکی که ناشی از اثر ویسکوزیته سیال است، رخ می‌دهد.

نتایج بدست‌آمده از تحلیل جریان سرعت مرکزی حاکی از این امر است که دمای خروجی سر دستگاه به شدت به تغییرات فشار کل داخل لوله وابسته است. لذا با بررسی فشار کل برای جریان سر دستگاه پارامتر جدیدی با عنوان ξ برای پیش‌بینی نحوه تغییرات دما در ورتکس تیوب‌ها با نابل‌رایحی و تعیین شده‌است. در شکل ۱۶ کانون فشار کل برای جریان سیال داخل ورتکس تیوب‌ها داده شده‌است.

همان‌گونه که مشاهده می‌شود، با پیشروی سیال در طول تیوب، فشار در نواحی زندریک دواره کاهش پیدا می‌کند و بر عکس فشار بر جریان سر دستگاه روز افزایش خواهد پیدا کرد.

واقع در نقطه سکن، مقدار فشار کل برای جریان گرم محیطی به میزان حداکن در جریان سر دستگاه میان مقدار مقدار خواهد بود.

شکل ۱۶- کانون فشار کل برای ورتکس تیوب برای $\beta=45^\circ$.

کانون دما کل برای ورتکس تیوب با $\beta=45^\circ$ در نسبت جرمی سرد ۳/۲ و فشار کاری ۴/۸ بار نشان داده‌شده حداکثر دمای خروجی گاز در بالای 2310 کلوین و حداقل دمای گاز در بالای 510 کلوین است. تغییرات دماي کل نشان می‌دهد کاهش گرداگرد دماي کل در نواحی زندریک به خروجی گرم است. در شکل ۱۵ خطوط مسیر عنصرهاي از سیال در نسبت جرمی سرد ۳/۲ برحسب دماي کل عنصرها مشاهده می‌شود.

این شکل نمایی کلي از حرکت عنصرهاي سیال در داخل ورتکس تیوب با $\beta=45^\circ$ در نواحی کمتری ارائه می‌دهد. در این شکل عنصرهاي پیامدوري (محیطی) به حرکت هم‌راه همراه از حرکت گرم در نواحی دمای بالاتری می‌رسند. در حالیکه عنصرهاي سیال در ناحیه مرکزی از اطراف را از دست داده و به عنصرهاي پیامدوري انتقال می‌دهند.
بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت:''

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت

بايد اشاره كرد كه عوامل زيادي در عملکرد سيستم توب ورکس كارکرد مثبت و ت
7- فهرست علائم

انرژی جنبشی افتنشانش $\frac{m^2}{s^4}$
شعاع ورتکس تیوب r
فشار کل جریان سیال (kPa) P
فصل محوری از خروجی سرد (mm) Z
فاصله محوری بدون بعد از خروجی سرد Z/L

ρ (کیلوگرم بر متر مکعب)
σ (گرم بر متر مکعب)
μ (بایگانی/متر)
μ_s (بایگانی/متر)
τ (نیترهای ناسور تنش)
$	au_{ij}$ (نیترهای ناسور تنش)

8- مراجع