Preparation and characterization of A356 composite reinforced with SiC nano- and microparticles by stir casting method

Kamal Amouri¹, Jamal Amouri², Saeed AhmadiFard¹, Mahdi Kazazi³*, Shahab Kazemi¹

1- Department of Materials Engineering, Bu-Ali Sina University, Hamedan, Iran.
2- Department of Materials Engineering, College of Shahid Sadoughi, Yazd, Iran.
3- Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran.
* P.O.B. 65719-95863 Malayer, Iran, m_kazazi@malayeru.ac.ir

ABSTRACT

In this study, A356 aluminum alloy matrix composites reinforced with different weight percentages of SiC nano- and microparticles respectively with 50 nm and 5 μm average particle sizes were fabricated by stir casting method. Due to the effect of T6 heat treatment on the strength and hardness of A356 alloy, the obtained composites were subjected to the T6 heat treatment. The mechanical properties such as hardness and compressive properties of the composites were investigated. Microstructures of the samples were also investigated by an optical microscope (OM), scanning electron microscope (SEM) and field emission scanning electron microscope (FESEM). Microstructural investigation indicated that T6 heat treatment led to the change of eutectic silicon morphology and formation of the Mg2Si precipitates during age hardening stage, leading to increased hardness and compressive strength. The results showed that an increase in wt.% of nanoparticles leading to increased hardness and compressive strength. The results of microstructural investigation showed the relatively uniform distribution of SiC nanoparticles, while the strength and hardness of the composites reinforced with nanoparticles were greater than those of the composite reinforced with microparticles, even with higher weight percent of reinforcement particles. Hardness and compressive strength at 35% strain for the composite reinforced with 1.5 wt.% nanoparticles were respectively obtained 62 HBN and 252MPa, which are improved compared to the base alloy.

Keywords: Stir casting, T6 heat treatment, Microstructure, SiC particles, Hardness and Compressive strength.

* Please cite this article using:
Table 1 Chemical composition of A356 alloy

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Al</th>
<th>Ti</th>
<th>Bal</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>1.31</td>
<td>0.18</td>
<td>0.14</td>
<td>0.10</td>
<td>0.42</td>
<td>0.10</td>
<td>7.10</td>
<td>0.36</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Fig. 1 SEM micrographs of As-received SiC micro particles

Fig. 2 TEM micrographs of As-received SiC nano particles

Fig. 3 View of stainless steel stirrer

Fig. 4 The stir casting system used in this study

(A2Cl3)

1 Union
2 Tescan
3 Jeol
4 Santam

Downloaded from mme.modares.ac.ir at 21:57 IRDT on Wednesday July 14th 2021
شکل 5 تصویر میکروسکوپ نوری از ریزساختار آلیاژ پایه

شکل 6 تصویر میکروسکوپ نوری از ریزساختار آلیاژ پایه

الوومیسیم و مناطق فسفید رنگ نشان دهنده فاز بوئتکیک آلومینیوم-سیلیسیم می‌باشد.

شکل 7 ریزساختار آلیاژ پایه و کامپوزیت توپیش شده با 5 درصد و 10 درصد میکروتری را نشان می‌دهد. همانطور که مشاهده می‌شود، ریزساختار آلیاژ پایه توپیش شده شامل دندان‌های کجیه و بلند و ساختار خالی است. با اضافه کردن ذرات قوی نانویی، طول دندان‌ها کاهش یافته و ساختار خالی در دندان‌های هیپومور به شکل تکثیری تبدیل شده است. این نشان می‌دهد که برخی از ذرات ایمن کرده و ساختار سلیسیسیم به میزان بالایی جوان نزدیک همگی در حین تأسیس آلومینیوم-سیلیسیم که به روش مایع توپیش شده، عمل می‌کنند. همچنین در کامپوزیت‌های توپیش شده، بهروز مایع، انداره دانه زمینه می‌تواند به مراپ تیکت از آلیاژ توپیش شده رابطه‌ای که سطح این اثر شدت می‌زند و ایجاد توده‌ای توسط ذرات دوره‌ها که میزان زمینه دانه‌های زمینه می‌شود [15].

شکل 8 تصویر میکروسکوپ الکترونی رویشی از ریزساختار آلیاژ پایه عملیات حرارتی

شده

جداسازی در طول عملیات حرارتی کروی می‌شود [17] در شکل 8 علاوه بر کروی شدن فاز بوئتکیک سیلیسیم، ترکیب بین فازی غی عنق از آهن با ریخت‌های برای شکل که با کنترل می‌شود نسبت به دراز پیامدهای کجیه و مالکی در شکل تپه‌ای غی عنق از آهن، احلاح و خر دادن است ترکیبات مالکیم‌کش طول پیامدهای غی عنق از آهن، عملیات حرارتی در دو مرحله در موارد می‌شود. مرحله اول شامل تکثیف شدن (کرویی شدن) شاخه‌های سوزنی سیلیسیم و در مرحله دوم، شاخه‌های
Fig. 10 FESEM micrograph of the 1.5wt. % SiC nanoparticle reinforced composites.

Fig. 9 (a) SEM micrograph of the 5wt.% SiC microparticle reinforced composites (b) EDS composition analysis

Sheikh 9 (a) Composite microstructure with 5wt.% SiC microparticle reinforced composites

Sheikh 10 Composite microstructure with 1.5wt.% SiC nanoparticle reinforced composites

339
Mimeco Maktabe Mardis. 1399. 16 Shahrivar (10)
Fig. 11 (a) SEM micrograph of the 1.5wt.% SiC nanoparticle reinforced composites in high magnification (b) EDS composition analysis.

Fig. 12 The hardness variation of the composites with SiC content.

Fig. 13 The compressive stress–strain curves of samples.

- **Fig. 11** (a) SEM micrograph of the 1.5wt.% SiC nanoparticle reinforced composites in high magnification (b) EDS composition analysis.

- **Fig. 12** The hardness variation of the composites with SiC content.

- **Fig. 13** The compressive stress–strain curves of samples.

