1- faculti member TMU
Abstract: (5818 Views)
Wear phenomena in wheel-rail contact for railway vehicle is very important parameter. For this purpose, simulation and dynamic analyze of new and worn wheel profiles are done. Then wagon’s derailment factor along curved track is determined. Analytic solution is achieved by using Hertz contact theory and Kalker linear theory. Also, simulation and analysis is done in ADAMS/Rail software and for different wheel profiles and derailment factor is determining using derailment criteria. Results showing that derailment factor are low initially but vertical forces decreases and centrifugal force increases lateral forces and consequently derailment factor increases along wagon entering curved track and worn profiles have more tendencies exposed to derailment. However, permitted wear limit must be defined. In many cases, worn profiles havefewer tendencies to derailment. Using this method can determine wear limit of wheel profile to maintenance and re-profileoperation. It is revealed that the curve length does not affect on derailment factor. Also, damper coefficient does not affect on mean derailment factor But it is much more turbulence. Perturbation in curve beginning is considerable and at the end of the curve, it restores to initial value.
Article Type:
Research Article |
Subject:
Vibration|Dynamics, Cinematics & Mechanisms|Analytical Methods Received: 2013/12/29 | Accepted: 2014/03/23 | Published: 2014/09/21