M M1 
,
B Gh *
2
1- T.M.U
2- t.m.u
Abstract: (6404 Views)
In this paper a continuous-time state-space aerodynamic model has been developed based on the boundary element method. First, boundary integral equations for unsteady potential subsonic flow around lifting bodies are presented with emphasis on a modified formulation for thin wings. Next, the BEM discretized problem of unsteady flow around an arbitrary wing is recast in the form of a state-space model using some auxiliary assumptions. To validate the proposed model, its predictions for unsteady aerodynamic coefficients due to various unsteady flows about different wing geometries were compared to the verified results of the direct boundary element solution and good agreement was observed. Because of the resulting aerodynamic model has been constructed in the continuous-time domain, it is particularly useful for optimization and nonlinear analysis purposes. Moreover, its state-space representation is the appropriate form for an aerodynamic model in control applications.
Received: 2011/02/26 | Accepted: 2011/06/18 | Published: 2011/06/28