Numerical investigation of entropy generation of nano-fluid in vertical sinusoidal channel with magnetic field

Habib Aminfar¹, Mohammad Nasiri², Marzieh Khezerloo¹

1- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
2- Faculty of Engineering, Islamic Azad University, Borujerd Branch, Borujerd, Iran.
* P.O.B. 6915136111, Borujerd, Iran, m.nasiri@iaub.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 30 May 2015
Accepted 12 July 2015
Available Online 29 July 2015

Keywords:
Nano-fluid
Mixed Convection
Sinusoidal Channel
Magnetic Field
Entropy Generation

ABSTRACT

In this study, generated entropy of mixed convection of Al₂O₃–water nano fluids in a vertical channel with sinusoidal walls under a constant and uniform magnetic field was numerically investigated. The effects of various parameters such as volume fraction of nanoparticles, amplitude of sine wave, Reynolds, Grashof and Hartman numbers were studied. This study was carried out by assuming the laminar, steady state and incompressible flow. Also, the thermo physical properties of nanoparticles were assumed constant. The Boussinesq approximation was used to calculate the variations of the density caused by buoyancy force and the finite volume method and two phase mixture model were used to simulate the flow. The results showed that the entropy generation due to heat transfer and viscous effects increases by adding nanoparticles to the base fluid. Also, the results showed that the entropy generation due to heat transfer increases by increasing the Grashof number and decreasing the Reynolds number, while a reverse trend is observed for entropy generation due to viscous effects. By increasing the Hartman number, the entropy generation due to heat transfer increases at first and then decreases and entropy generation reduction due to viscous effects reduces. For all studied entropy generations, the entropy generation decreases using corrugated channels.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Please cite this article using:
کاهش ضخامت اموزشی حرفه‌ای، انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

7) برای مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

8) برای مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

2. مدل‌های حاکم

- معادله حرارتی

2.1. در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

2.2. در این مدل‌ها، حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

3. مدل‌های حرارتی

3.1. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

3.2. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

4. مدل‌های حرارتی

4.1. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

4.2. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

5. مدل‌های حرارتی

5.1. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

5.2. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

6. مدل‌های حرارتی

6.1. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

6.2. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

7. مدل‌های حرارتی

7.1. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.

7.2. حساب دقیق در مدل‌های حرارتی، مطالعه کرده شده که دیدگاه‌ها متفاوت است. انتقال حرارت از فاز سال در کالریا به دوباره هوا و حرارت بهینه است.
۳- هندسه و شرایط مرزی

شماتیک کانال دو مورد بررسی در شکل ۱ نشان داده شده است کانال به صورت دو صفحه سیستمی موارد هدف به طول کانال L و با ۳۴۰mm، عرض ناهیه ورودی (W) با ۱۰mm و طول ناهیه سیستمی با ۲۲۰mm می‌باشد و طول ناهیه سیستمی با ۱۰mm می‌باشد.

تعداد ۱۰ موج، در جهت محور و ممکن است در خط ورودی قرار دارد. جهت نوسه، فلزی به شکل جنبی ۶۰mm ایجاد کننده کانال و ۶۰mm ایجاد کننده دیگر، نظیر گرفته شده است. برای رسیدن به شکل ایجاد وی، از نوشته‌های شرایط محدوده استفاده شده است.

\[S(y) = \frac{w}{2} \pm \alpha \sin \left(\frac{2\pi(x - L_x)}{L_w} \right), \quad L_x \leq x \leq L_e \quad (15) \]

در رابطه (15) w عرض کانال در سمت ادامه شماتیک کانال و a دامنه موج این پیهم‌داده که به صورت بی‌پدیدبود برای این کانال و A = 2\(a/w\) به منظور کاهش، زمان محاسبات، از شرکت تقریبی در مرکز استفاده شده است. تضاد کانال مورد بررسی قرار گرفت، است نوسه‌سای‌ها به پیوستی دما و سرعت یک‌پایه وارد کانال و در سمت سیستمی کانال تحت میدان و شرایط نیروی در انتهای موج به میدان محوری عودی می‌باشد و در همان شرایط زمین و افزایش در خروجی محیط می‌باشد.

معادلات حاکم با اعمال شرایط مرزی از دور نفوذ و عدم عودی در همه‌پیما، شار حجمی و میدان منفاطی ناب و یک‌پایه در دو سیستمی، پیوستی سرعت و پرتوی دما و یک‌پایه در ورودی و فاصله انسیم در خروجی محیط می‌باشد.

۴- خواص نوسه‌سای

خواص ویژگی‌های آب و نانوذ اکسیژنیوم به جدول ۱، امتداد قطر ناوبرات ۳۵mm دارد. داده‌های میدان منفاطی ناب و یک‌پایه یک‌پایه در ورودی و فاصله انسیم در خروجی محیط می‌باشد.

![شماتیک کانال مورد بررسی](https://example.com/shema.png)

سیرت افزایش به عنوان سرعت نسبی فاز به سرعت فاز اول تعیین می‌شود.

\[V_{pf} = V_p - V_{fe} \quad (8) \]

سرعت دریافت طبق رابطه (9) با سرعت لغش در ارتباط با است.

\[V_{dr,p} = V_{pf} - \sum_{k=1}^{n_k} \frac{\varphi_k \rho_k V_k}{\rho_{eff}} \quad (9) \]

سرعت لغش به شکل رابطه (10) به نوبه می‌باشد و همکاران [26] به دست آمده است، محاسبه به گردید.

\[V_{pf} = \frac{\rho_p d_p^2}{18 \mu_{inifl}} \left(\frac{\rho_p - \rho_{eff}}{\rho_p} \right) \quad (10) \]

در رابطه (10) ضریب پاست که که با توجه به صورت (11) تعیین گردید.

\[f_{rag} = \left[1 + 0.15 \left(\frac{R_e}{647} \right) ^{0.8}, \quad R_e \leq 1000 \right] \quad (11) \]

که عده ریالوند در هم اس و شتاب با رابطه (12) محاسبه می‌شود.

\[f = g - \left(V_m \right) V_m \quad (12) \]

در معادله (2) مربوط به نرخ لغش است که در جهت حریم به کانال می‌شود در این معادله:

\[J = \sigma_{eff} (\dot{E} + \dot{V} \times \vec{B}) \quad (13) \]

در رابطه (13) میدان الکتریکی اصلی، \(\dot{E} \) میدان الکتریکی اصلی و \(\vec{B} \) میدان مغناطیسی اصلی. \(\sigma_{eff} \) میدان الکتریکی مغناطیسی و میدان سرعت میدان الکتریکی اصلی شده یک‌پایه در نظر گرفته می‌شود. در این رابطه از اثات ایجاد میدان الکتریکی ناشی از نبود میدان مغناطیسی چرخ میدان مغناطیسی به دلیل عدم وجود میدان الکتریکی.

در رابطه (14) می‌توان با استفاده از شکل میدان مغناطیسی محاسبه کرد:

\[\vec{B} = \mu_0 H \quad (14) \]
6-بررسی استلال نتایج شکم‌های
بررسی بررسی بیانیات و یکپاره‌بودن نتایج به شکم‌های بینایی، از میان استلال شکم برای تعداد نقاط مختلف در راه‌آموز طولی و عرضی با نوار کنترل مطالعه مقدماتی شده است. یاری منطقی از مدلی شکم مختلف برای ایجاد سه‌گانه جراحی و انجام حرارت پسین با داده‌هایی از 340 گلویی استفاده شد. نتایج بررسی انجام حرارت و سرعت به‌دست آمده در مرکز کالدن در جدول 2 ارائه شده در نتایج به‌دست آمده در زمان محاسبات، شکم‌های بینایی 44 نقطه در جهت عرضی و 442 نقطه در جهت طولی انتحاب شد.

7-اشتباه‌سنجی روش حلق عددهای به‌منظور انتخاب سنجی روی عددهای به‌کار گرفته شده در این مطالعه سرعت بی به‌دست آمده کلامی معنی‌برنگی در کالدن دو بی‌ثابتی در حضور میزان مغناطیسی با حل تحلیل شرکه‌ای [29] مقایسه شده نتایج همان طور که در نکته 2 مشاهده شد، تلاطم خوبی بین جهت عرضی و حلق تحلیلی برای $H_a=5$ بوده و همین‌طور، همگی نتایج مشابه است. جراحی در دو کالدن به‌دست آمده و بدون حضور میزان مغناطیسی با نتایج طرح‌های بینایی و همکاران [30] مقایسه شده نتایج همان طور که در جدول 3 نشان داده شده است تلاطم خوبی بین جهت عرضی و تلاطم بینایی و همکاران [30] مشاهده می‌شود. علاوه بر این به‌منظور اشتباه‌سنجی روش میزان سری جراحی نانوسیال، قابلیت آل‌اهوی انتقال و همکاران [31] ناحیه جراحی در کالدن هر دو در این مطالعه مشاهده شد. همین‌طور که در نکته 3 مشاهده می‌شود، تلاطم نتایج قابل قبول است.

جدول 2-نیروی نتایج شکم‌های

<table>
<thead>
<tr>
<th>V_{max}/V_n</th>
<th>شکم</th>
<th>ρ_{bf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6802</td>
<td>1592/76</td>
<td>412-22</td>
</tr>
<tr>
<td>1/6802</td>
<td>160930</td>
<td>412-28</td>
</tr>
<tr>
<td>1/6802</td>
<td>162163</td>
<td>412-85</td>
</tr>
<tr>
<td>1/6803</td>
<td>162835</td>
<td>412-44</td>
</tr>
<tr>
<td>1/6818</td>
<td>163164</td>
<td>412-44</td>
</tr>
<tr>
<td>1/68799</td>
<td>163551</td>
<td>484-44</td>
</tr>
</tbody>
</table>

8-روش حلق عددهای
در این مطالعه رویت حاکم به سمت عددهای و استفاده از نرم افزار انسیس/فولدنت 14 که می‌توان روش حجم محدود است. حل شیمیایی از مدل‌های بی‌شیمیایی و پیش‌بازه‌ای گسسته عمق‌سوزی و انرژی استفاده شده است. استفاده مدل‌های بی‌شیمیایی و پیش‌بازه‌ای گسسته عمق‌سوزی و انرژی استفاده شده است. استفاده مدل‌های بی‌شیمیایی و پیش‌بازه‌ای گسسته عمق‌سوزی و انرژی استفاده شده است. استفاده مدل‌های بی‌شیمیایی و پیش‌بازه‌ای گسسته عمق‌سوزی و انرژی استفاده شده است. استفاده

$\beta_{eff} = \frac{1}{1+(1-\frac{\rho_{bf}}{\rho_p})^\frac{1}{1/(1-\frac{\rho_{bf}}{\rho_p})}}$ (24)

$\eta = N \times 10^{7} \text{ m/s}$, $N = 2.411 \times 10^{-7} \text{ m/s}$ B = 247, C = 140

$\rho_{eff} = (1 - \phi)\rho_{bf} + \rho_p$ (16)

$\sigma_{eff} = (1 - \phi)\sigma_{bf} + \rho_p$ (18)

$\rho_{bf} = \frac{\rho}{B}$ (21)

$Re_{bf} = \frac{P\rho L}{B \rho}$ (22)

$\eta = N \times 10^{7} \text{ m/s}$, $N = 2.411 \times 10^{-7} \text{ m/s}$ B = 247, C = 140

$\beta_{eff} = \frac{1}{1+(1-\frac{\rho_{bf}}{\rho_p})^\frac{1}{1/(1-\frac{\rho_{bf}}{\rho_p})}}$ (24)
اصطکاکی برای یک سیال عفین با افزایش عدد رنولدز افزایش می‌یابد. افزودن نانوذ تا یکی از طرفی به‌طور به‌صورت هم‌ارزی هم‌ارزی شده، از طرفی به‌طور افزایش هدایت حرارتی می‌شود. با توجه به رابطه (25) در نتیجه آنتروپی تولیدی نانوی از انتقال حرارت افزایش می‌یابد (شکل 4).

شکل 4 تغییرات آنتروپی تولیدی (الف) ناشی از بازکردن نانوذ حرارتی. (ب) ناشی از افزایش عدد رنولدز افزایش می‌یابد.

(الف)

جدول 3 مقایسه نتایج آنتروپی کل تولیدی حلال با نتایج عددی بالاجی و همکاران

| سرعت ورودی | نتایج کار حاضر | (متر ثانیه)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>0.0142</td>
<td>2</td>
</tr>
<tr>
<td>0.025</td>
<td>0.0324</td>
<td>4</td>
</tr>
<tr>
<td>0.023</td>
<td>0.0242</td>
<td>6</td>
</tr>
</tbody>
</table>

شکل 3 مقایسه نتایج حل شده با نتایج آنتروپی

(ب)
نمودار 5 - تغییرات آنتی‌بیوتیک در میزان حجمی-

نمودار 6 - تغییرات انتخابی در میزان حجمی-

تغییرات آنتی‌بیوتیک در میزان حجمی-

g = 4% کسر حجمی تغییرات آنتی‌بیوتیک در میزان حجمی-

در تغییرات آنتی‌بیوتیک در میزان حجمی، میزان حجمی تغییرات آنتی‌بیوتیک در میزان حجمی-

در حالت افزایش دوباره، گرایش مصرف می‌شود. با داشته باشد افزایش در حالت افزایش دوباره، گرایش M:

credit: مهندسی کتاب مقدمات، 1394، شماره 15، صفحه 92
مشاهده می‌شود همان‌طور که گفته شد با افزایش عدد هارتمان، جریان به سمت دیواره شیبی می‌شود و قدرتها صعود می‌کنند و در ارتفاع معکوس یا دیواره و در نتیجه انتروپی جریان کاهش می‌یابد.

- نتیجه گیری

در این مطالعه دو کانال جریان نانو‌سیال در داخل کانال‌ها بی‌دوره‌ای سیلوسیس، در حضور بدون حضور میزان مناسبی به روی عدد بریسی بخش این کانال نمایش می‌دهد. عدد هارتمان و دامنه موج سیلوسیس روی انتروپی توده مورد مطالعه قرار گرفت. نتایج مربوط به جریان بدون حضور میزان مناسبی شیب می‌شود که با افزایش عدد هارتمان و کاهش عدد انتروپی جریان کاهش می‌یابد و به پایین‌ترین سطح می‌رسد.

- فهرست علائم

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \frac{2a}{w})</td>
<td>پریشینه مقفر موج</td>
</tr>
<tr>
<td>(b)</td>
<td>میزان فاصله مناسبی</td>
</tr>
<tr>
<td>(C_p)</td>
<td>گرمای برجهو</td>
</tr>
<tr>
<td>(D_h)</td>
<td>ضریب هریودیک</td>
</tr>
<tr>
<td>(\vec{g})</td>
<td>ضریب سایه</td>
</tr>
<tr>
<td>(f_{drag})</td>
<td>شتاب گرانش</td>
</tr>
<tr>
<td>(G_r = \frac{\alpha_{0.1}}{\alpha_{0.05}})</td>
<td>عدد بی‌بعد گرانش</td>
</tr>
<tr>
<td>(H)</td>
<td>شدت میزان مناسبی</td>
</tr>
<tr>
<td>(Ha = \frac{H}{\sqrt{f_{drag}}})</td>
<td>عدد بی‌بعد هارتمان</td>
</tr>
<tr>
<td>(k)</td>
<td>ضریب انقلاب حرارتی سراسری</td>
</tr>
<tr>
<td>(l/K)</td>
<td>نسبت بی‌بعدی</td>
</tr>
<tr>
<td>(L)</td>
<td>طول کانال</td>
</tr>
<tr>
<td>(L_s)</td>
<td>طول ناحیه آپناتیک</td>
</tr>
<tr>
<td>(L_w)</td>
<td>طول ناحیه سیلوسیس</td>
</tr>
<tr>
<td>(Pr)</td>
<td>عدد پریان</td>
</tr>
<tr>
<td>(q'')</td>
<td>شار حرارتی دیواره</td>
</tr>
<tr>
<td>(\vec{r})</td>
<td>شتاب</td>
</tr>
<tr>
<td>(Re = \frac{v_0}{v})</td>
<td>عدد گرانش</td>
</tr>
<tr>
<td>(S)</td>
<td>بروز دیواره سیلوسیس</td>
</tr>
</tbody>
</table>

شکل 7: تغییرات انتورپی انتقلی از پایه‌بندی حرارتی (ب) ناشی از پایه‌بندی انتقالی در مقابل عدد گرانش اعداد هارتمان مختلف

| حسین اسمی‌نژاد | بروز دیواره سیلوسیس | پایه‌بندی حرارتی |

[17x664]Downloaded from mme.modares.ac.ir at 10:05 IRST on Saturday October 17th 2020
[79x221]

\\begin{flushleft}
|\\text{مراجع}|
\\end{flushleft}