Experimental and numerical investigation of effect of shape of ribs on flexural behavior of grid composite plates

Vahid Tahani, Davoud Shahgholian Ghahfarokhi, Gholam Hossein Rahimi*

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

*P.O.B. 14115-111, Tehran, Iran, rahimi_gh@modares.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 07 April 2016
Accepted 02 June 2016
Available Online 02 July 2016

ABSTRACT

With the arrival of composite materials and because of their unique properties, ideas were presented in order to strengthen and improve their performance. The ideas were reason for building of Grid composite structures. These structures are widely used in the aerospace, missile and Marine industry because of their ideal mechanical properties: special stiffness and high strength against impact and fatigue. Grid composite plates are made from thin composite shell connected a series of composite ribs. Ribs network results in a significant increase in stiffness and strength of structure. In this research, experimental and numerical investigations of effect of Shape of ribs have been on flexural behavior of grid composite plates. For this purpose, three types of Grid plates were considered with triangle, square and rhombic ribs. For building these plates, silicone mold was designed and built and was also used for making plates from hand lay-up and hand-wound layer technique. Samples were subjected to three-point bending test; for this purpose, the fixture was designed and built. From numerical solution of the problem and comparison of experimental results it was observed that there is very little difference between experimental and numerical results. Experimental results show that special flexural stiffness of plate with square rib is 1.92 and 1.88 plate with triangular and rhombic ribs, respectively. Also, the highest stiffness and bending strength of plate with square rib is 1.58 and 1.41 plate with triangular and rhombic ribs, respectively. Also, the difference between experimental and numerical results show that there is very little difference between experimental and numerical results. Experimental results show that special flexural stiffness of plate with square rib is 1.92 and 1.88 plate with triangular and rhombic ribs, respectively. Also, the highest stiffness and bending strength of plate with square rib is 1.58 and 1.41 plate with triangular and rhombic ribs, respectively.
Composite Grid Stiffened Structures

Fig. 1 Grid composite plate
Fig. 2 Composite plates are considered (a) triangular rib (b) rhombic rib (c) square rib

Fig. 3 Silicone molds

3-Safety Testing

Silicone molds are used to test the safety of composite materials. In this study, two types of molds were used: (a) flat silicone molds and (b) ribbed silicone molds. The molds were used to test the safety of composite materials under various conditions.

Fig. 3 Silicone molds

Shape 3: Flat silicone

Shape 4: Ribbed silicone

ASTM D7264
روش ساخت به این صورت است که در ابتدا زین و هاردن به ترتیب 2 همزمان با مونومر سبز می‌شوند. روند استفاده شده $	ext{Si} 	ext{W}1^2$ از هاردن استفاده شده $	ext{CW}1^2$ می‌باشد. در مرحله بعدی ریزید از آلیاف روی ویجکس درون قالب سیلیکونی قرار داده می‌شود و به ترتیب زین و هاردن آماده می‌شود. آلیاف از این قالب در شکل 4 نشان داده شده است. قالب سیلیکونی در مرکز قالب قچی قرار داده می‌شود و محل ایجاد میخا روی قالب قچی باید هر شکل شکستگی کتیوئیدیان متوقف است.

پس از قرار دادن یک ردیف از الاف، ریزید بعدی الاف با طی همان مسر قلمی درون قالب سیلیکونی قرار داده می‌شود و به ترتیب زین و هاردن نیز آماده می‌شود. این مرحله آن کمک ادامه بیا می‌کند تا شیب‌های قالب کاملاً از الاف بر شود. پس از انجام این مرحله، بارچه‌های بندیده شده به مونومر ساخت پوسته استفاده می‌شود. بهینه منظور، اینجا یکی از پرگاره‌ها روت ریزید یا قرار داده می‌شود و به ترتیب زین و هاردن آماده می‌شود.

سس لایه‌ای بعیدی هب کمیت سیلیکون بر روی اول قرار داده شده هر دست به بهترین زین و هاردن آماده می‌شود. پس از ساخت، نمونه‌ها به مدت 48 ساعت در دما و یکی چهار قرار داده می‌شود کاملاً جدا شوند. در شکل 5 ورق‌های کامپوزیتی ساخته شده در این تحقیق نشان داده شده است.

- Fig. 6 Molds for making samples

![Fig. 6 Fixture of three-point bending](image)

Fig. 6 Мolds for making samples

- Fig. 7 Three-point bending test

![Fig. 7 Three-point bending test](image)

Fig. 7 Three-point bending test

- Fig. 8 Composite plates built in this research (a) rhombic rib (b) triangular rib (c) square rib

![Fig. 8 Composite plates built in this research](image)

Fig. 8 Composite plates built in this research (a) rhombic rib (b) triangular rib (c) square rib

1. Instron
2. HY5161
ورق کامپوزیتی در نمای‌های ایجاد شد، سپس تقویت‌کندن‌ها ساخته شد و با نویجه به شکل شکوهی تقویت‌کندن‌ها بر روی پوسته خارجی ایجاد گردید.

این اعداد از هشدار یک یک باین یک یک باین یک یک باین یک میلی‌متر است و سطح تلف نافذ‌کندن‌ها 6/6 میلی‌متر است طول آن با نویجه به شکل شکوهی متغیر است.

2-5- خواص مواد

به منظور مدل کردن نمونه‌ها در نرم افزار الگویی محدود اسکیس، نیاز به ثابت‌گیری لیست نمونه‌ها و پوسته‌های کامپوزیتی و تقویت‌کندن‌ها با استفاده از دستگاه تست کشش مورد تحقیق قرار گرفت. نمونه‌های این شکل هر دو روی پوسته‌ها مورد تحقیق قرار گرفت. نمونه‌های این شکل هر دو روی پوسته‌ها مورد تحقیق قرار گرفت. نمونه‌های این شکل هر دو روی پوسته‌ها مورد تحقیق قرار گرفت.

2-6- تعريف نوع تحليل و تمام

پس از مدل سازی و اعمال شرایط مزرعی در مدل اساسی با نویجه به عامل برخورداری با یک نرخ ناشناخته (2 میلی‌متر بر دقیقه) و همچنین شباستاتیکی بودن سیاله، در محیط تغییر نوع دمو، تحلیل صورت استاتیکی انتخاب شد و در ادامه با نویجه به عامل بین تقویت‌کندن‌ها از انتخاب جاسوسی استفاده شد.

جدول 1: خواص مکانیکی تقویت‌کندن

<table>
<thead>
<tr>
<th>خواص مکانیکی</th>
<th>مقدار</th>
<th>خواص مکانیکی</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>501 MPa</td>
<td>X1</td>
<td>24 GPa</td>
<td>E1</td>
</tr>
<tr>
<td>60.48 MPa</td>
<td>Y1</td>
<td>5.5 GPa</td>
<td>E2</td>
</tr>
<tr>
<td>53.186 MPa</td>
<td>Y2</td>
<td>5.5 GPa</td>
<td>E3</td>
</tr>
<tr>
<td>76.24 MPa</td>
<td>Y3</td>
<td>1.9 GPa</td>
<td>E4</td>
</tr>
<tr>
<td>53.186 MPa</td>
<td>Y4</td>
<td>1.9 GPa</td>
<td>E5</td>
</tr>
<tr>
<td>76.24 MPa</td>
<td>Y5</td>
<td>2.5 GPa</td>
<td>E6</td>
</tr>
<tr>
<td>80 MPa</td>
<td>S1</td>
<td>0.275</td>
<td>υ1</td>
</tr>
<tr>
<td>–</td>
<td>S11</td>
<td>0.275</td>
<td>υ11</td>
</tr>
<tr>
<td>80 MPa</td>
<td>S2</td>
<td>0.0798</td>
<td>υ2</td>
</tr>
</tbody>
</table>

جدول 2: خواص مکانیکی پوسته

<table>
<thead>
<tr>
<th>خواص مکانیکی</th>
<th>مقدار</th>
<th>خواص مکانیکی</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>287 MPa</td>
<td>X1</td>
<td>13.7 GPa</td>
<td>E1</td>
</tr>
<tr>
<td>144.5 MPa</td>
<td>X2</td>
<td>13.7 GPa</td>
<td>E2</td>
</tr>
<tr>
<td>287 MPa</td>
<td>Y1</td>
<td>6 GPa</td>
<td>E3</td>
</tr>
<tr>
<td>144.5 MPa</td>
<td>Y2</td>
<td>1.49 GPa</td>
<td>E4</td>
</tr>
<tr>
<td>20 MPa</td>
<td>Y3</td>
<td>1.49 GPa</td>
<td>E5</td>
</tr>
<tr>
<td>25 MPa</td>
<td>Z1</td>
<td>1.86 GPa</td>
<td>E6</td>
</tr>
<tr>
<td>18.83 MPa</td>
<td>S1</td>
<td>0.3</td>
<td>υ1</td>
</tr>
<tr>
<td>–</td>
<td>S11</td>
<td>0.3</td>
<td>υ11</td>
</tr>
<tr>
<td>18.83 MPa</td>
<td>S2</td>
<td>0.21</td>
<td>υ2</td>
</tr>
</tbody>
</table>

Cohesive

ASTM-D3039M-00
5- انتخاب برای پیوست آزمایشی ۸ درجه ای از ۲۰ برای کننده‌ها استفاده. این کننده‌ها با اندازه مناسب برای هر جزء و یکسان از این مدل‌ها استیل در حالت استفاده به دست آمده است. در نظر گرفته شد که برای مدل‌هایی که با دقت بالا در پیوسته شدن به دست می‌آید، مختصات می‌باشد نمونه‌ها، در مسیر انتخاب این جام زمانی است در که شرایط مختلف سطح تغییر یافته است.

6- تحلیل شرود تخزیر

در این تحقیق پایین آزمایشی استیلی که بیش از نظر، مواد تغییری به شرح و این واقعیت پیدا کننده‌ها و مدل‌های این تحقیق، مقدار مکان‌ها در هر مدل‌ها استیلی که به دست می‌آید، مختصات می‌باشد نمونه‌ها، در مسیر انتخاب این جام زمانی است در که شرایط مختلف سطح تغییر یافته است.

7- نتایج

در این بخش نتایج حاصل از تست‌های تخزیری و مدل‌سازی برای اثری از تغییر حساسیت‌های کامپوزیتی اثرات خواهید داشت که به منظور مقایسه بهتر نتایج در پارامتر بایشینه ویژه و به تغییر می‌گردد. بار بهبود ویژه نسبت به نویز وارد شده به یک نگاهی به تغییر از شرایط می‌شود که در کانال مدیری از تحلیل و اثر ویژه می‌باشد برای تعیین حساسیت کننده‌ها برای تغییر.

Fig. 10 An example of meshing
2-7 ورق کامپوزیتی با تقویت کننده‌های مرطب شکل

یکی از اولویت‌های جدید ساختار‌های مشابه، اگری مرطب با ارتودری می‌باشد در قسمت تجربی برای این نوع تقویت کننده نیز برخی از آرایش‌های قرار داده تا نتایج بدست آمده از احتمالات کاهش در جدول 4 میانگین نتایج تجربی و عددی این سهم نمونه آورده شده است. میانگین در شکل 13 نیم‌درجه تمرکز دردجویی (نیرو) علی‌رغم یکی از نمونه‌ها نشان داده قابل مشاهده است. این نمونه 141 گرمی 972 نیرو نیرو گرفته است در قسمت بار بیشترین 6 درصد و در قسمت سطحی محدود 14 درصد اختلاف بین نتایج تجربی و عددی وجود دارد. لازم به ذکر است که در شکل 13 نمودار عددی نتایج شروع تجربی با عبارتی ناطق‌تری که ورق کامپوزیتی بیشترین بار را تحمیل می‌کند، رسم شده است.

در شکل 14 نمونه مرطب شکل پس از انجام تست تجربی نشان داده شده است.

7-3 ورق کامپوزیتی با تقویت کننده‌های لوزی شکل

ورق‌های کامپوزیتی مشابه با تقویت کننده‌های لوزی شکل یکی از پربردازندگان این نوع هویاتها می‌باشد در جدول 5 میانگین نتایج تجربی و عددی سهم نمونه‌های آماده شده است.

جدول 5 میانگین نتایج تجربی و عددی نمونه مرطب

<table>
<thead>
<tr>
<th>بار بیشترین وزه (N/gr)</th>
<th>عددی نمونه مرطب</th>
<th>اختلاف بین تجربی و عددی</th>
<th>مخصوص (N/mm-گر)</th>
<th>تجربی</th>
<th>عددی</th>
<th>نگاتور</th>
<th>مخصوص (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.206</td>
<td>200</td>
<td>17%</td>
<td>6.45</td>
<td>0.388</td>
<td>6.08</td>
<td>14%</td>
<td>6%</td>
</tr>
</tbody>
</table>

جدول 3 میانگین نتایج تجربی و عددی نمونه مرطب

<table>
<thead>
<tr>
<th>بار بیشترین وزه (N/gr)</th>
<th>عددی نمونه مرطب</th>
<th>اختلاف بین تجربی و عددی</th>
<th>مخصوص (N/mm-گر)</th>
<th>تجربی</th>
<th>عددی</th>
<th>نگاتور</th>
<th>مخصوص (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.07</td>
<td>1395</td>
<td>13%</td>
<td>9.70</td>
<td>1.70</td>
<td>3.48</td>
<td>14%</td>
<td>1.19</td>
</tr>
</tbody>
</table>

شکل 11 نتایج عددی و تجربی نمونه مرطب

شکل 12 نمونه مثبت شکل پس از انجام تست تجربی

میانگین مکانیک مدارس شهروند 1395. دوره 16. شماره 6
7- مقایسه اثر شکل تقویت کننده‌ها

به معنای مقایسه بهتر و برسی اثر شکل تقویت کننده‌ها بر پیشین وزه و سختی وزه بر نو تقویت کننده در شکل‌های ۱۶ و ۱۷ تریش شده است. همانگونه که مفاده می‌شود، نتایج این تحقیق در صورتی که شکل‌های برفی بشری و نواز و دیگر شکل‌های دیگری نیست خروجی نافذه و نویز کانوپربوزی بیشتری برای ناحیه می‌کند.

جدول ۵ مقایسه تجربی و عضدي بار پیشین وزه نوپا نوزن اتمی مختلف

<table>
<thead>
<tr>
<th>شکل تقویت کننده‌ها</th>
<th>بار پیشین/N (N/mm)</th>
<th>سختی مخصوص نوپا (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تجربی</td>
<td>0.21</td>
<td>0.586</td>
</tr>
<tr>
<td>عضدي</td>
<td>0.18</td>
<td>0.522</td>
</tr>
<tr>
<td>ادغام تجویز و عضدي</td>
<td>14%</td>
<td>10%</td>
</tr>
</tbody>
</table>

شکل ۱۶ مقایسه تجربی و عضدي بار پیشین وزه نوپا نوزن اتمی مختلف

شکل ۱۷ مقایسه تجربی و عضدي سختی مخصوص نوپا لازم

شکل ۱۵ نتایج تجربی و عضدي بار پیشین وزه نوپا نوزن اتمی

