A nonlinear high order analysis for sandwich beam with flexible core under low velocity impact

Soheil Dariushi¹, Mojtaba Sadighi²

1-Iran Polymer and Petrochemical Institute, Tehran, Iran
2-Department of Mechanical Engineering, Amir Kabir University of Technology, Tehran, Iran

*P.O.B. 14977-13115 Tehran, Iran, s.darishi@ippt.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 20 May 2015
Accepted 27 July 2015
Available Online 22 August 2015

Keywords:
Sandwich beam
Low velocity impact
Nonlinear analysis
High order sandwich panel theory

ABSTRACT

A novel geometrically nonlinear high order sandwich panel theory for a sandwich beam under low velocity impact is presented in this paper. The equations are derived based on high order sandwich panel theory in which the Von-Karman strains are used. The model uses Timoshenko beam theory assumptions for behavior of the face sheets. The core is modeled as a two dimensional linear elastic continuum that possesses shear and vertical normal and also in-plane rigidities. Nonlinear equations for a simply supported sandwich beam are derived using Ritz method in conjunction with minimum potential energy principle. After obtaining nonlinear results based on this enhanced model, simplification was applied to derive the linear model in which kinematic relations for face sheets and core reduced based on small displacement theory assumptions. A parametric study is done to illustrate the effect of geometrical parameters on difference between results of linear and nonlinear models. Also, to verify the analytical predictions some low velocity impact tests were carried out on sandwich beams with Aluminum face sheets and Nomex cores. In all cases good agreement is achieved between the nonlinear analytical predictions and experimental results.

چیده

در این مقاله تویی بینگاقی برای سازه‌های ساندویچی برای تحلیل برخی از گره‌های ساندویچی تحت بارگذاری ضریب سرعت پایین را ارائه نموده‌اند. شده است در این تویی، این سیستمی با در نظر گرفتن تغییرات غیرخطی بر اساس کرنش قوئ-کارمن نوشتی شده که سازه شوید و سازه ساندویچی به سه جزء، هر یک از جزئیاتی انواعی را که سرعت بیش از یک گره ساندویچی در سرعت‌های مختلف محسوب می‌گردد به‌شکل تجربی ساندویچی برای دستگاهی اپوکسی و هسته‌های از جنس لاستیک نیتریل به‌شکل مدل‌سازی می‌شود. سپس تجهیز قرار گرفتن مقایسه نتایج حاصل از چنین تحلیلی با نتایج آنومالی مبتنی بر داده‌های تویی غیرخطی آرا به سه جزء می‌تواند برای ساندویچی را از بین ببرد ضریب فشرده سازه در سرعت‌های مختلف صیغه‌های شبیه شبیه به سه جزء ساندویچی از یک مقدار کارمن نوشتی‌ای در دامنه نیتریل استفاده می‌شود. نتایج حاصل از این تحلیل‌ها نشان داد که تویی‌های غیرخطی بانده به دست آمده با ارائه، این نتایج بسیار جالبی به دست آورده‌اند. نتایج حاصل از این تحلیل‌ها نشان داد که تویی‌های غیرخطی بانده به دست آمده با ارائه، این نتایج بسیار جالبی به دست آورده‌اند.

A non-linear high-order analysis for sandwich beam with flexible core under low velocity impact

Soheil Dariushi¹, Mojtaba Sadighi²

1-Iran Polymer and Petrochemical Institute, Tehran, Iran
2-Department of Mechanical Engineering, Amir Kabir University of Technology, Tehran, Iran

*P.O.B. 14977-13115 Tehran, Iran, s.darishi@ippt.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 20 May 2015
Accepted 27 July 2015
Available Online 22 August 2015

Keywords:
Sandwich beam
Low velocity impact
Nonlinear analysis
High order sandwich panel theory

ABSTRACT

A novel geometrically nonlinear high order sandwich panel theory for a sandwich beam under low velocity impact is presented in this paper. The equations are derived based on high order sandwich panel theory in which the Von-Karman strains are used. The model uses Timoshenko beam theory assumptions for behavior of the face sheets. The core is modeled as a two dimensional linear elastic continuum that possesses shear and vertical normal and also in-plane rigidities. Nonlinear equations for a simply supported sandwich beam are derived using Ritz method in conjunction with minimum potential energy principle. After obtaining nonlinear results based on this enhanced model, simplification was applied to derive the linear model in which kinematic relations for face sheets and core reduced based on small displacement theory assumptions. A parametric study is done to illustrate the effect of geometrical parameters on difference between results of linear and nonlinear models. Also, to verify the analytical predictions some low velocity impact tests were carried out on sandwich beams with Aluminum face sheets and Nomex cores. In all cases good agreement is achieved between the nonlinear analytical predictions and experimental results.
با فرض تغییر شکل‌های غیرخطی در همست، معادلات کرنش - تغییر مکان ارسال روابط کرنش (کرنش فن-کارمن) به شکل زیر می‌باشند:

\[e_{z}^{x} = u_{x}^{2} + \frac{1}{2} (w_{x}^{2})^{2} \] \((12) \)
\[e_{z}^{z} = \frac{1}{4} (u_{x}^{2} + w_{x}^{2}) \] \((13) \)
\[e_{z}^{w} = w_{z}^{2} \] \((14) \)

3-2- معادلات پیوسته
معادلات پیوسته جابجایی در راستای ضخامت و راستای داخل صفحه در فضای مشترک بین روبه بالا و هسته (\(e_{z} \))، می‌تواند به شکل زیر باشد:

\[w(x, t) = w_{0}(x, t) + \frac{1}{2} \theta_{0}(x, t) \] \((15) \)
\[w(x, t) = w_{0}(x, t) - \frac{1}{2} \theta_{0}(x, t) \] \((16) \)
\[w(x, t) = w_{0}(x, t) + \theta_{0}(x, t) \] \((18) \)
\[w(x, t) = w_{0}(x, t) - \theta_{0}(x, t) \] \((19) \)

با جابجایی معادلات (10) و (11) در راستای (15) و (18) انجام عملیات ریاضی مورد نیاز و سپس ساده‌سازی روابط، می‌توان به:

\[w_{z}^{2}(x, t, x) = w_{0}^{2}(x, t) + \theta_{0}^{2}(x, t) \] \((20) \)

همانگونه که مشاهده کردیم، تعداد معیارهای مربوط به مولفه‌های تغییر مکان سه‌گانه کمک روابط پیوسته جابجایی در خم‌سازه به 7 معیار در حساب سایر معیارهای این سه معیار مورد نیاز است. همچنین، مدل معادلات (19) و (20) در معادلات (12) و (14) در راستای از جابجایی معادلات (16) و (21) استفاده شده می‌باشد.

\[\sigma_{z}^{x} = \frac{C_{z}}{C_{z} + C_{z}} \] \((21) \)

2-2- معادلات همست
مولفه‌های غیرخطی عمده و صفحه‌های در همست به ترتیب این جمله‌هایی را می‌تواند در حالتی باشد که باید دو مورد ساده‌سازی کرنش در همست باشد. برای بدست آوردن تنش‌های م FileSystem با استفاده از روابط (10) و (11) در مدل معادلات (16) و (21) استفاده می‌شود.

\[w_{z}^{2}(x, t) = w_{0}^{2}(x, t) + \theta_{0}^{2}(x, t) \] \((22) \)
\[\sigma_{z}^{x} = \frac{C_{z}}{C_{z} + C_{z}} \] \((23) \)
\[\sigma_{z}^{w} = \frac{C_{w}}{C_{w} + C_{w}} \] \((24) \)

383

References:
يُشير الباء إلى أن هناك خطأ في النص. من الممكن أن يكون النص غير قابل للقراءة بشكل طبيعي.

1. Runge-Kutta-Fehlberg method (RKF45)
2. Matlab
3. Maple

{\begin{align*}
Q_i & = \left\{ \begin{array}{ll}
(U_{m}^{i}), & (W_{m}^{i}), \quad (\Phi_{m}^{i}), \quad (W_{P}^{i})
\end{array} \right. \\
Q(t) & = 0 \\
W_{0}(t) & = 0
\end{align*}}

(34)

(35)

(36)

(37)

{\begin{align*}
M \{ \dot{Q} \} - K \{ Q \} = F \{ Q \}
\end{align*}}

(38)

{\begin{align*}
\frac{d}{dt} \left(\frac{d}{dt} \right) + \frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(39)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(40)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(41)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(42)

{\begin{align*}
I = U + W + T
\end{align*}}

(43)

{\begin{align*}
\text{ما هو جزء من النص الذي يتضمن خطأ؟}
\end{align*}}

(44)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(45)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(46)

{\begin{align*}
\text{ما هو جزء من النص الذي يتضمن خطأ؟}
\end{align*}}

(47)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(48)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(49)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(50)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(51)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(52)

{\begin{align*}
\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}
\end{align*}}

(53)

(54)
شدن حجه کمک‌گر زمان حل می‌کند، یعنی به جای معادله غیر
خلی (36) معادله (40) بایستی می‌آید.
\[[M] \{Q_1\} - \{K\} [Q_1] = \{F_1\} \]
(4c)

در ماده فوق [K] ماتریس شرایط خالی است که فقط شامل شرایط
محدودیتی شامل می‌باشد. مشابه داده‌های دیگر می‌توان به فاصله‌ای
مناسبی از نقطه حذف و روش زاویه گونا گونه مورد استفاده قرار
گرفت.

3- بردی تجربی
در این قسمت مورد استفاده شده، نحوه ساخت نمونه‌ها، ابعاد و اندازه
نمونوها و چگونگی انجام آزمایش‌ها آرایه می‌گردد.

3-1 ماده
مواد به کار رفته برای ساخت نمونه‌ها شامل رول آلومینیوم T3-2024
به ضخامت 10 میلیمتر و هسته آلومینیوم که به ضخامت 12
میلیمتر می‌باشد. هسته آلومینیوم کوچک‌ترین فاکتور بین یک آرایه
است که بزین و شرایط مقاله حالت برش روی‌ها داده شده است. این
ساختار دارای سطح بالایی شفاف و یکسانی با مقادیر بالا و خواص مکانیکی مناسب
می‌باشد. خواص مکانیکی هر یک از ماده به کار گرفته شده، در جدول 1 آمده
است.

3-3 روش ساخت نمونه‌ها و انجام آزمایش‌ها
برای ساخت نمونه‌های ساندوچی و انجام آزمایش‌های عملی، در ابتدا یک رول
ساندوچی اصلی ساخته شد سپس نمونه‌ها به شکل نپ برای انجام نمونه به استفاده
شد. نمونه به استفاده یک مکانیسم بایان و پایین به هسته نمونه در بین رویها
و هسته از یک آن چسبانده استفاده شد به ترتیب رویه پایینی، یا به
چسبانده، هنگامی که به سمت پایینی بر روی صفحه کار گذشته تا
بردید شد.

4- نتایج و بحث
1- بررسی تصاویر بلافاصله به رابطه تحلیلی
تعداد 14 نمونه بر روی تماسی - شکل 1 آزمایشگری شده به استاندارد
ورق‌های ساندوچی با تکه‌گاه تا ناشنا می‌دهد نمونه که در بخش
دوم توضیح داده شد می‌توان از عناصری مربوط به رابطه شکل انجام
تزریق نمونه بر روی رابطه نمونه به نمونه با همان تغییر

380

شکل 2 نیم نمونه بر روی تکه‌گاه همراه با تکه‌گاه صلب

شکل 3 نمونه ساندوچی بر روی تکه‌گاه صلب برای کارکرد استاتیکی

1- Nomex
ناتیجه در شکل 8 ارائه شده است. همان‌طور که در این شکل مشاهده می‌شود، سرعت تهیه بر روی مدل سرعت اولیه است. سرعت این امر از لحاظ فیزیکی می‌تواند در حالت‌های مختلفی تاثیر گرفته باشد.

شکل 6: نمودار ثبات‌نیاپیتی: زمان مقایسه‌ای باید بین این ساندویچی تحت ضریب با سرعت 25 متر بر ثانیه

شکل 7: نمودار ثبات‌نیاپیتی: زمان مقایسه‌ای باید بین این ساندویچی تحت ضریب با سرعت 32 متر بر ثانیه

شکل 8: نمودار سرعت: زمان برای ضریب زندگی با سرعت اولیه 25 متر بر ثانیه

شکل 9: نمودار لگاریتمی باید برای ورق ساندویچی

\[
F = 1.1428 \ln(a) + 15.796, \quad R^2 = 0.9738
\]

\[
F = 15.796 a^{1.4288}
\]

1: Coefficient of determination (R²)
۵ - نتیجه گیری

در این مطالعه تحلیل ضخامت پایه‌های ساندویچی تحت درک‌کننده فرآیند سقوط یافته‌اند. با استفاده از شرایط غیرانتهایی، همواره به کار به عرضه و محاسبه محدوده انجام می‌گیرد. در نتیجه این تحقیق با استفاده از طریقی که در مقاله درک‌کننده فرآیند سقوط یافته‌اند، شرایط محاسباتی نیز به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند. در نتیجه این تحقیق، شناختن فضای مورد نظر و محاسبات به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند.

به‌طور کلی، نتیجه‌گیری‌های این مطالعه به‌طور کلی نشان می‌دهد که با استفاده از تحلیل‌های مربوط به شرایط غیرانتهایی، می‌توان به‌طور کلی نتایج دقیق‌تری را به‌دست آورده و به‌طور کلی نتایج دقیق‌تری را به‌دست آورده.

متن جامع:

با استفاده از طریقی که در مقاله درک‌کننده فرآیند سقوط یافته‌اند، شرایط محاسباتی نیز به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند. در نتیجه این تحقیق، شناختن فضای مورد نظر و محاسبات به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند.

به‌طور کلی، نتیجه‌گیری‌های این مطالعه به‌طور کلی نشان می‌دهد که با استفاده از تحلیل‌های مربوط به شرایط غیرانتهایی، می‌توان به‌طور کلی نتایج دقیق‌تری را به‌دست آورده و به‌طور کلی نتایج دقیق‌تری را به‌دست آورده.

متن جامع:

با استفاده از طریقی که در مقاله درک‌کننده فرآیند سقوط یافته‌اند، شرایط محاسباتی نیز به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند. در نتیجه این تحقیق، شناختن فضای مورد نظر و محاسبات به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند.

به‌طور کلی، نتیجه‌گیری‌های این مطالعه به‌طور کلی نشان می‌دهد که با استفاده از تحلیل‌های مربوط به شرایط غیرانتهایی، می‌توان به‌طور کلی نتایج دقیق‌تری را به‌دست آورده و به‌طور کلی نتایج دقیق‌تری را به‌دست آورده.

متن جامع:

با استفاده از طریقی که در مقاله درک‌کننده فرآیند سقوط یافته‌اند، شرایط محاسباتی نیز به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند. در نتیجه این تحقیق، شناختن فضای مورد نظر و محاسبات به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند.

به‌طور کلی، نتیجه‌گیری‌های این مطالعه به‌طور کلی نشان می‌دهد که با استفاده از تحلیل‌های مربوط به شرایط غیرانتهایی، می‌توان به‌طور کلی نتایج دقیق‌تری را به‌دست آورده و به‌طور کلی نتایج دقیق‌تری را به‌دست آورده.

متن جامع:

با استفاده از طریقی که در مقاله درک‌کننده فرآیند سقوط یافته‌اند، شرایط محاسباتی نیز به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند. در نتیجه این تحقیق، شناختن فضای مورد نظر و محاسبات به‌طور مناسب مستند شده و نتایج به‌دردست آمده‌اند.

به‌طور کلی، نتیجه‌گیری‌های این مطالعه به‌طور کلی نشان می‌دهد که با استفاده از تحلیل‌های مربوط به شرایط غیرانتهایی، می‌توان به‌طور کلی نتایج دقیق‌تری را به‌دست آورده و به‌طور کلی نتایج دقیق‌تری را به‌دست آورده.

References