ساخت و شیب‌سازی یک سیستم آب‌شیرین کن خورشیدی و رطوبت زنی-رطوبت زدایی

ابراهیم چهاردانگی جواران ۱، علی حسین خانی ۲، سید محمد حجت محمدی ۱

۱ استادان، مهندسی کشاورزی، دانشگاه تحصیلات تکمیلی صنعت، طوافی پیشرفته، کرمان
۲ کارشناسی ارشد، مهندسی ارزش‌های جدیدپزشکی، دانشگاه تحصیلات تکمیلی صنعت و فناوری پیشرفته، کرمان

\[\text{کم‌دریافتی : جواد زاهدی} \]

چکیده

آب‌شیرین‌کن خورشیدی رطوبت زنی-رطوبت زدایی، یکی از کارآمدترین روش‌های شیرین‌سازی آب در میانس کوچک، رای مناطق طواف و نیز بسیاری از کشورهای خورشیدی رطوبت زنی-رطوبت زدایی با ظرفیت ۲۰ لیتر در روز است. این سیستم از انواع اولیه از پلاریسیون سیستم برخوردار است. در این مقاله، با هدف تحقیق در مورد پلاسما معکوس شیرین‌کن خورشیدی، با استفاده از روش‌های مشناهی این نوع سیستم بررسی شده است. برای این منظور، سیستم بررسی شده خورشیدی مورد بررسی قرار گرفته است. نتایج گزارش نشان دهنده است که پلاسما معکوس شیرین‌کن خورشیدی، با مناسب تولید نیازهای شرکت‌ها و نیز امکان رضایت کننده‌تر را دارد.

اطلاعات مقاله

مقاله پذیرش شده در: ۳۱ خرداد ۱۳۹۵
دریافت نخستین نسخه: ۰۸ آذر ۱۳۹۵
از کار درست: ۲۱ آذر ۱۳۹۵

فیلم و ارائه

Nazareh, Djavaran, E.Kh. Javaran, S.Y. Mohammadi

manufacturing and simulation of a solar humidification-dehumidification desalination system

Ebrahim Jahanshahi Javaran, Ali Hossein Khani, Seyed Mohammad Hojjat Mohammadi

Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

ARTICLE INFORMATION

Original Research Paper
Received 24 August 2016
Accepted 25 October 2016
Available Online 11 December 2016

Keywords:
Solar Energy
Desalination
Humidifier
Dehumidifier
Air heater

ABSTRACT

Solar humidification-dehumidification desalination is one of the most practical methods for water desalination in small scale for regions far from cities and with low population. The aim of this study is manufacturing and simulation of a solar humidification-dehumidification desalination system with capacity of 20 l/day. This system consists of humidification and dehumidification units, solar air and water heaters. To this end, first this system is explained and modeled. Then, manufacturing process of solar air heaters and different parts of desalination system is investigated. After the manufacturing process of the desalination system, this system is experimentally tested and the effect of pertinent parameters, such as the temperature of inlet water and air to humidifier; inlet water temperature and flow rate to dehumidifier on the performance of the system and distillate product are investigated. The results show that the effect of water temperature on the fresh water produced is more than air temperature. Moreover, using the chilled water, which has a temperature in the range of water well temperature, in the dehumidifier inlet leads to an increase of 51% in the fresh water produced. Also, the best water flow rate to the dehumidifier inlet is 0.12 kg/s. Finally, experimental and simulation results are compared with each other and good consistency is seen.

شیرین‌کن خورشیدی رطوبت منفی می‌شود. با توجه به این نسبت، بسیاری از کشورهای خورشیدی، برای استفاده از روش‌های خورشیدی در مناطق گرم، شاملی در شیب‌سازی، می‌توانند در سایر موارد دیگری نیز بهره بگیرند. در این مقاله، آب‌شیرین‌کن خورشیدی مورد بررسی قرار گرفته است. نتایج گزارش نشان دهنده است که آب‌شیرین‌کن خورشیدی با مناسب تولید نیازهای شرکت‌ها و نیز امکان رضایت کننده‌تر را دارد.

Manufacturing and simulation of a solar humidification-dehumidification desalination system

Please cite this article using:
جراحی جرمی را بر نسبت خروجی سامانه و روح تولید انرژی بی‌شمار به مرور بررسی قرار دادن نتایج نشان داد که در نسبت جراحی‌های پایین‌تر، نسبت خروجی به آزام دماهای بین‌پرا بسیار بزرگ‌تر بوده و محققان رطوبت‌دایی افزایشی دیدند.

سلطان ایسائیسیان، دانشکده جراحی و لیزر سازمان سلامتی و سرمایه‌گذاری، تهران ۲۰۱۵

مطالعات مکانیکی بر روی ایسائیسیان‌کربن رطوبت‌دایی

ویژه نوری، دانشگاه علوم پزشکی، تهران ۲۰۱۵

۲۴۰

۱ Engineering Equation Solver
2- شرح مسئله

آزمایشگاه‌های خروجی‌بندی با روش‌های مربوط به روش‌های تکنیک‌های خروجی‌بندی دارای یک تکنیک مختلف گردش آب و هوا که ابتدا (آب و هوا) به آب گرمی شده است، آب باید به صورت مصرفی استفاده شود. اگر این کار انجام نگردد خروجی‌زک گردشگری و راه آهن و کناره‌زار، از مساحت همیشه آب و او در ورودی به استفاده در سیستم‌های آب و هوا مهم است. می‌توان از آن برای گرمی مصرفی استفاده کرد. این میزان املاح از زیاد است.

3- مدل محاسبات و معادلات حاکم

\[S = I(t) \alpha \] \tag{1}

\[Q_u = F_R(A/L(t) - U_L(T_1 - T_{amb})) \] \tag{2}

\[F_R = \frac{M_0}{(T_{out} - T_{in})} \] \tag{3}

\[F_R = \frac{1}{V_f + \frac{1}{A}} \] \tag{4}

\[F_2 = \frac{C_{p,m}}{A_C U_f V_f} \] \tag{5}

\[S = \text{نرخ انتقال حرارت} \] \tag{6}
میانگین سطحی از سیستم آب شیرین‌کن خورشیدی رطوبت زنی رطوبت زدایی

یک شماتیکی از سیستم آب شیرین‌کن خورشیدی رطوبت زنی رطوبت زدایی

$$h_r = \frac{\sigma (T_1^2 + T_2^2)(T_4 + T_2)}{1 + \frac{1}{\epsilon_1}}$$ (7)
4-1 سیستم خورشیدی ایمن آب نگهداری گرم

به‌طور کلی، برای گرم کردن آب از دستگاه رکتیکار در زمینه‌ای از ایرانیان ساخته شده، واقعیت نشان‌دهندهٔ این‌که، کمک‌رسانی به دستگاه‌های ساخته شده در دامنه‌ای دیگری از زمین‌های ساخته شده می‌باشد.

4-2 هواگرد خورشیدی

امنیت طور که گفته شد برای گرم کردن هوا برای دستگاه‌های ساخته شده، واقعیت نشان‌دهندهٔ این‌که، کمک‌رسانی به دستگاه‌های ساخته شده در دامنه‌ای دیگری از زمین‌های ساخته شده می‌باشد.

جدول 1 مفاهیم مناسب سیستم خورشیدی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-3 واحد روطبی

یکی از اصلی‌ترین و اهم‌ترین سیستم آب شریانی، واحد رطوبی زن می‌باشد.

جدول 2 مشخصات سیستم خورشیدی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-4 سیستم خورشیدی

می‌توان به این ترتیب از منابع مختلف توجه کرد:

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-5 سیستم خورشیدی

می‌توان به این ترتیب از منابع مختلف توجه کرد:

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-6 سیستم خورشیدی

می‌توان به این ترتیب از منابع مختلف توجه کرد:

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-7 سیستم خورشیدی

می‌توان به این ترتیب از منابع مختلف توجه کرد:

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>

4-8 سیستم خورشیدی

می‌توان به این ترتیب از منابع مختلف توجه کرد:

<table>
<thead>
<tr>
<th>متغیر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان آب شریان</td>
<td>لیتر/ساعت</td>
<td>1.6</td>
</tr>
<tr>
<td>مقدار محور روم</td>
<td>میلیاردکیلووات</td>
<td>1.2</td>
</tr>
<tr>
<td>ابعاد طوطی</td>
<td>متر</td>
<td>3.0</td>
</tr>
<tr>
<td>میزان گازهای آلی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای نیتروژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای اکسیژن</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
<tr>
<td>میزان گازهای گلکسی</td>
<td>متر کیلوگرم</td>
<td>5.0</td>
</tr>
</tbody>
</table>
روستایی، عمده‌ای از آب چاه‌های قرار دادن توپ‌های استفاده می‌گردد و از یک‌جا به سمت‌های به شیب‌سازی آب را وارد است. لازم به ذکر است که دما باید در محدوده دمایی آب چاه قرار دارد و استفاده از آن بر براش نشان می‌دهد.

جدول ۲ مقایسه نتایج شبیه‌سازی و تجربی سیستم آب‌شیرین

<table>
<thead>
<tr>
<th>نمایش</th>
<th>آزمایش</th>
<th>شبیه‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰.۵</td>
<td>۱.۳</td>
<td>۰.۹۵</td>
</tr>
<tr>
<td>۶.۴</td>
<td>۱.۶</td>
<td>۱.۳۹</td>
</tr>
<tr>
<td>۶.۹</td>
<td>۱.۶۸</td>
<td>۱.۷۲</td>
</tr>
<tr>
<td>۴.۱</td>
<td>۲.۱۸</td>
<td>۱.۹۳</td>
</tr>
<tr>
<td>۳.۶</td>
<td>۲.۴۳</td>
<td>۲.۴۷</td>
</tr>
<tr>
<td>۲.۴</td>
<td>۲.۴۱</td>
<td>۲.۴۷</td>
</tr>
<tr>
<td>۴.۲</td>
<td>۲.۱۷</td>
<td>۲.۱۸</td>
</tr>
<tr>
<td>۰.۳</td>
<td>۲.۲۷</td>
<td>۲.۲۷</td>
</tr>
<tr>
<td>۴.۵</td>
<td>۲.۲۷</td>
<td>۲.۲۷</td>
</tr>
<tr>
<td>۶</td>
<td>۱.۷۸</td>
<td>۱.۸۱</td>
</tr>
<tr>
<td>۷.۸</td>
<td>۱.۳۷</td>
<td>۱.۴۱</td>
</tr>
</tbody>
</table>

کمک شیب‌سازی به بهبود عملکرد دستگاه می‌نماید که در این پژوهش به آن پرداخته شده است.

در ابتدا نتایج حاصل از شبیه‌سازی با نتایج تجربی در نظر گرفته شده که حداکثر در روز ۳۰ ترمینه به‌صورت تنازی‌های مقایسه و در "جدول ۲" نتایج شیب‌سازی و تجربی تطابق خوبی را مخصوصاً در دماهای بالا نشان می‌دهد.

۲- تجزیه و تحلیل محتویات دستگاه

عملکرد دستگاه آب‌شیرین کن در روز ۳۰ ترمینه از ساعت ۸ صبح تا ساعت ۷ می‌باشد.

۳- مقایسه نتایج شبیه‌سازی و تجربی سیستم آب‌شیرین

نظر به اینکه بسیاری از آزمایشات دستگاه آب‌شیرین، بررسی عملکرد دستگاه در سایر حالت‌ها نیز معنوی می‌باشد و از آنجا بررسی عملکرد دستگاه آب شیرین کن در میزان شرایط و فناوری هر یک به‌جرد است. لذا با استفاده از شبیه‌سازی و ابزار جهت آن با داده‌های آزمایشی تجربی، می‌توان عملکرد شبیه‌سازی را در شرایط دگر نشان داد. هر یک از مدل‌ها استفاده شده در این شبیه‌سازی براساس همان‌گونه انداده‌های داده‌های آزمایشی می‌باشد. که در این مطالعه صرفه که شبیه‌سازی نوعی کامیونیکی می‌باشد که در مراجع این نیز ذکر گردیده است همچنین، نم‌افزار این استفاده در شبیه‌سازی نمایان می‌باشد ضمناً "شکل ۳" نظیر مورد استفاده در شبیه‌سازی EES می‌باشد.
بنا به توجه به میزان نتیجه داشت که در این شرایط برای داشتن بهتری از 30 درصد دهم بهترین کاربرد روش تولید بوده‌اند.

شکل 3 واریاسیون شیمیایی سیستم آب شیرینی گیر در مزرعه

شکل 4 غربال سیستم معنی‌دار است که برای سیستم‌های دام آب چهار مناسب

شکل 5 تغییرات دامآب روستا در مزرعه زن و رطوبت

شکل 6 نشان دهنده میزان آب آب روستا به رطوبت کر و رطوبت زن در سه مدل مختلف می‌باشد.
246
شکل 6 تغییرات سالنی دمای آب ورودی به رطوبتزن در سه آزمایش

شکل 7 تغییرات سالنی دمای هوای ورودی به رطوبتزن در سه آزمایش

با استفاده از هر دو منبع است، همینطور که مشاهده می‌کنیم تأثیر دمای هوا نسبت به دمای آب بر روی میزان آب شیرین تولید شده کمتر است. البته طبقه‌بندی و تئور از تغییرات در واحدهای رطوبتزن در شرایطی که دمای آب نسبت به افزایش یک درجه دمای آب بیشتر از افزایش یک درجه دمای هوا بیشتر خواهد بود

با افزایش دمای هوا، آب ورودی به رطوبتزن تابید حرارت در واحدهای رطوبتزن افزایش می‌یابد، و دمای هوای خروجی از رطوبتزنی به واحدهای افزایش حرارت در این واحدهای افزایش‌پذیر کمتر خواهد شد به این ترتیب دوره حیات کاهش می‌یابد. افزایش دمای هوا باعث کاهش دمای آب ورودی به‌طور کلی نسبت به دمای آب افزایش می‌یابد، در واحدهای افزایش‌پذیر که در نهایت به واحدهای افزایش می‌پردازد، دمای آب ورودی به‌طور کلی کاهش می‌یابد.

شکل 9 تغییرات دمای آب ورودی به رطوبتزن

Fig. 6 Hourly variation of inlet water temperature to humidifier in three experiments

Fig. 7 Hourly variation of inlet air temperature to humidifier in three experiments

Fig. 8 The cumulative fresh water produced in three experiments

Fig. 9 Variation of inlet water temperature to the dehumidifier

Downloaded from mme.modares.ac.ir at 4:30 IRDT on Wednesday June 30th 2021
پانزدهمین همایش جهانی جوانان و همکاران

5- تأثیر دی اب و ورودی به رطوبت کیر بر عملکرد سیستم
برای بررسی تأثیر دی اب ورودی به رطوبت کیر، سطح در روز 12 خرابه‌ها با دی اب و ورودی رطوبت کیر 0.2 kg/s و در روز 9 خرابه‌ها با دی اب و ورودی رطوبت کیر 0.12 kg/s در روز 11 خرابه‌ها با دی اب ورودی رطوبت کیر 0.04 kg/s آزمایش شده است. پارامترهای فاقد تغییر در طول این آزمایش‌ها، هر دو دی اب و ورودی به رطوبت کیر 0.08 kg/s، دی اب ورودی به رطوبت کیر 0.12 kg/s و در روز 12 خرابه‌ها با دی اب و ورودی رطوبت کیر 0.04 kg/s در روز 9 خرابه‌ها با دی اب و ورودی رطوبت کیر 0.12 kg/s بر اساس آزمایش‌های انجام شده است. در این آزمایش‌ها، تغییرات نسبتی کاهش بین دی اب و ورودی به رطوبت کیر 23.5 درصد سلولپسیس بوده است.

6- نتیجه‌گیری
در این مطالعه، چک‌سازه آب‌شیرینی کن خورشیدی رطوبت‌زنی به استفاده از رطوبت کیر می‌تواند با توجه به طیف مجزا بر عملکرد سیستم نظیر دی اب و ورودی به واحد رطوبت‌زنی، بهترین عملکرد مشترک به استفاده در از رطوبت کیر و خورشیدی می‌باشد. همچنین نتایج نشان می‌دهد به دلیل تولید میزان انیال حرارت تأثیری جدی‌تری بر عملکرد سیستم نخواهد داشت. "شکل 12" نشان دهنده میزان آب تولید شده در دی‌های مختلفی می‌باشد با توجه به کانداسور استفاده شده، فشار دی اب از 0.12 kg/s تا 0.2 kg/s تسهیل کننده‌ی بر مقادیر آب شیرینی تولید شده تارد.

![شکل 10](https://example.com/fig10.png)
شکل 10 تأثیر دی اب و ورودی به رطوبت کیر بر میزان جمعیت آب شیرین

![شکل 11](https://example.com/fig11.png)
شکل 11 اختلاف دی اب ورودی و خروج رطوبت کیر
در پایان تأییدی دی آب ورودی به رطوبت‌گیر بر عملکرد سیستم بوده بررسی 0.12 kg/s قرار گرفته‌های مانند‌طور که مشاهده شد با افزایش دی‌اکسید کربن به میزان 40 دارد افزایش پیدا کرده است و بعد از آن افزایش نیز به میزان 0.2 kg/s قرار گرفته است و البته کم تر از آن‌جا که افزایش دی‌اکسید کربن هزینه‌های انرژی به‌طور عمده دی آب برای این سه حالت آرامش شده همان مقدار 0.12 kg/s می‌باشد.

• به صورت خلاصه می‌توان نتایج مهم را به صورت زیر لیست کرد:

1. گاهی دمای آب و هوا ورودی به رطوبت‌گیر دارای افزایش می‌باشد.
2. افزایش دمای آب و هوا ورودی به رطوبت‌گیر به دلیل افزایش تبدیل حرارت در واحد رطوبت‌گیر موجب افزایش میزان آب تولید شده می‌شود.
3. افزایش دمای آب ورودی به رطوبت‌گیر به دلیل افزایش ترکیب انتقال حرارت در واحد رطوبت‌گیر موجب افزایش میزان تولید شده می‌شود، اما به دلیل نابودی اکسید ورود به رطوبت‌گیر این افزایش نیست.
4. افزایش میزان آب تولید نشده و بعد از آن نسبت به سیستم می‌باشد.

7- فوریت علائم

۷- فوریت علائم

<table>
<thead>
<tr>
<th>فوریت علائم</th>
<th>فرمول</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>فاکتور برداشت حرارت</td>
</tr>
<tr>
<td>F_R</td>
<td>(J/kg) انرژی</td>
</tr>
<tr>
<td>h</td>
<td>(kg/s) نیم جرمی</td>
</tr>
<tr>
<td>Q</td>
<td>(W) نرخ انرژی حرارت</td>
</tr>
<tr>
<td>T</td>
<td>(C) دما</td>
</tr>
<tr>
<td>U_L</td>
<td>ضریب انفال حرارت</td>
</tr>
</tbody>
</table>

۷- فوریت علائم

<table>
<thead>
<tr>
<th>فوریت علائم</th>
<th>فرمول</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>محیط</td>
</tr>
<tr>
<td>b</td>
<td>آب شور خروجی رطوبت زن</td>
</tr>
<tr>
<td>in</td>
<td>ورودی</td>
</tr>
<tr>
<td>loss</td>
<td>انفال</td>
</tr>
</tbody>
</table>

در پایان تأییدی دی آب ورودی به رطوبت‌گیر بر عملکرد سیستم بوده بررسی 0.12 kg/s قرار گرفته‌های مانند‌طور که مشاهده شد با افزایش دی‌اکسید کربن به میزان 40 دارد افزایش پیدا کرده است و بعد از آن افزایش نیز به میزان 0.2 kg/s قرار گرفته است و البته کم تر از آن‌جا که افزایش دی‌اکسید کربن هزینه‌های انرژی به‌طور عمده دی آب برای این سه حالت آرامش شده همان مقدار 0.12 kg/s می‌باشد.

• به صورت خلاصه می‌توان نتایج مهم را به صورت زیر لیست کرد:

1. گاهی دمای آب و هوا ورودی به رطوبت‌گیر دارای افزایش می‌باشد.
2. افزایش دمای آب و هوا ورودی به رطوبت‌گیر به دلیل افزایش تبدیل حرارت در واحد رطوبت‌گیر موجب افزایش میزان آب تولید شده می‌شود.
3. افزایش دمای آب ورودی به رطوبت‌گیر به دلیل افزایش ترکیب انتقال حرارت در واحد رطوبت‌گیر موجب افزایش میزان تولید شده می‌شود، اما به دلیل نابودی اکسید ورود به رطوبت‌گیر این افزایش نیست.
4. افزایش میزان آب تولید نشده و بعد از آن نسبت به سیستم می‌باشد.

7- فوریت علائم

۷- فوریت علائم

<table>
<thead>
<tr>
<th>فوریت علائم</th>
<th>فرمول</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>فاکتور برداشت حرارت</td>
</tr>
<tr>
<td>F_R</td>
<td>(J/kg) انرژی</td>
</tr>
<tr>
<td>h</td>
<td>(kg/s) نیم جرمی</td>
</tr>
<tr>
<td>Q</td>
<td>(W) نرخ انرژی حرارت</td>
</tr>
<tr>
<td>T</td>
<td>(C) دما</td>
</tr>
<tr>
<td>U_L</td>
<td>ضریب انفال حرارت</td>
</tr>
</tbody>
</table>

۷- فوریت علائم

<table>
<thead>
<tr>
<th>فوریت علائم</th>
<th>فرمول</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>محیط</td>
</tr>
<tr>
<td>b</td>
<td>آب شور خروجی رطوبت زن</td>
</tr>
<tr>
<td>in</td>
<td>ورودی</td>
</tr>
<tr>
<td>loss</td>
<td>انفال</td>
</tr>
</tbody>
</table>