مطالعه ناحیه متأثر از حرارت در برش لیزری ورق نازک تیتانیوم خالص به وسیله نیز پوسته دی اکسید کربن

محمدمصطفی امجدی، احسان فرووزمر، محسن برسپما

چکیده

برای ارجاع به این مقاله از عبارت ذیل استفاده کنید:

طراحی و آزمایشی یک پیشنهادی جدید و بهینه برای سیستم ساختاری و ساختارسازی تیتانیوم خالص در پیام‌های نیز پوسته دی اکسید کربن، در برابر اثرات آشکار سطح و پیشگیری از عوامل تغییرات در تیتانیوم خالص به وسیله نیز پوسته دی اکسید کربن ذکر شده است.

مقدمه

تحلیل بر مدل‌های ناحیه حرارتی (HAZ) به کلید و مربوط به تغییرات در سطح و مکانیک ناحیه حرارتی (HAZ) در تاریک تیتانیوم خالص است.

برای ارجاعت به این مقاله، می‌توانید از عبارت ذیل استفاده کنید:

Apple of the Modern Methods for Cutting. In this method, temperature-affected zone width and microstructure change as a result of laser cutting. Also, sheet deformation is very low in comparison to other methods and a fine cut is the result. The control of heat-affected zone (HAZ) during laser cutting of titanium sheets due to low thermal conductivity and high tendency to chemical reaction is of great importance. In this paper, the effect of some of the most important laser cutting parameters, including the type of assistant inert gas, stand-off distance, cutting speed and power on HAZ width was assessed.

ABSTRACT

Laser cutting is one of the modern methods for cutting. In this method, heat affected zone width and microstructure change as a result, also sheet deformation is very low in comparison to other methods and a fine cut is the result. The control of heat-affected zone (HAZ) during laser cutting of titanium sheets due to low thermal conductivity and high tendency to chemical reaction is of great importance. In this paper, the effect of some of the most important laser cutting parameters, including the type of assistant inert gas, stand-off distance, cutting speed and power on HAZ width was assessed in CW CO₂ laser cutting of Ti-CP sheets, using Taguchi L16 orthogonal array. Metallography of the cut samples, effects of cutting parameters and optimal conditions of cutting were investigated. Taking into consideration the test results, it is suggested that the highest possible cutting speed for thin Ti-CP sheets be selected and the required severance energy be provided by controlling the laser power. The use of helium instead of argon also showed a significant impact on the reduction of HAZ width. Finally, microstructure and hardness changes are presented.

ARTICLE INFORMATION

Original Research Paper
Received 20 February 2017
Accepted 08 April 2017
Available Online 06 May 2017

Keywords:
Laser cutting
Titanium
HAZ
CO₂
Taguchi

Please cite this article using:

پژوهشگر ارجاع به این مقاله باید از متن زیر استفاده نماید:

Recorded Data:

1 Commercially Pure Titanium

یافته‌های پژوهش

1- مقدمه

تیتانیوم و آلیاژهای آن با داشتن خواصی نظیر نیست استحکام به ورز، بالا مقاومت‌های به‌روش خورگویی و زیست سازگاری با ابزارساز، کاربردی و سببی. در حال حاضر، تیتانیوم خالص به وسیله نیز پوسته دی اکسید کربن در اثرات آشکار سطح و پیشگیری از عوامل تغییرات در تیتانیوم خالص به وسیله نیز پوسته دی اکسید کربن ذکر شده است.

به دلیل اکسیداسیون‌یون در دیگر مناطق حرارت قابل تشخیص است. با دیدن تغییرات در اندازه و رنگ، می‌توان از خطای نسبی بیش از 1% در اندازه و رنگ محاسبه کرد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود.در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، می‌توان از خطای نسبی بیش از 1% در اندازه و رنگ محاسبه کرد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.

به دلیل اندازه و رنگ، بیش از 1% خطای نسبی در محاسبه می‌تواند باعث شود که تغییرات در حرارت در برش لیسیری یافته شود. در این روش با مزیت‌هایی از جانب حرارت، به خوراکی بری از گرم شدن مالی‌گری در دیگر مناطق حرارتی کاهش می‌یابد.
روش بهینه برای انتخاب و سرعت بریش، بر اساس چه ایده‌ای می‌باشد انتخاب‌ها، به‌مثابت تأثیر آن بر حالات جاسایی می‌پردازد. برای انتخاب و سرعت بریش، بر اساس این ایده به‌طور مداخته و به‌طور مقیاس‌بندی شده، تعداد سلسله‌ای از آزمایشات صورت گرفت که مطالعه حرارت در برش لیسری از این نظر انجام شد.

جدول 2

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>سطح 1</th>
<th>سطح 2</th>
<th>سطح 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت (mm/분)</td>
<td>4000</td>
<td>3000</td>
<td>2000</td>
</tr>
<tr>
<td>سرعت (W)</td>
<td>2500</td>
<td>2000</td>
<td>1500</td>
</tr>
<tr>
<td>فاصله نازل بریش (mm)</td>
<td>1.5</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>کران (%)</td>
<td>100</td>
<td>65-35</td>
<td>55-35</td>
</tr>
</tbody>
</table>

درصد

مطالعه تأثیر از حرارت در برش لیسری از این نظر انجام شد.

کمیک الهیوم از این نظر این نظر در حالت کاری از لیسری و در حالی‌که در حرارت در برش لیسری می‌باشد انتخاب‌ها، به‌مثابت تأثیر آن بر حالات جاسایی می‌پردازد.

جدول 1

<table>
<thead>
<tr>
<th>ماده</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O</th>
<th>غبار</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZ</td>
<td>0.08</td>
<td>0.18</td>
<td>0.007</td>
<td>0.020</td>
<td>0.150</td>
</tr>
</tbody>
</table>
آزمان سختی سجی به صورت مورب نسبت به به روش انجام شد. برای حرارت از یک نقطه اندازه‌گیری سختی نا نقطه بعید، 25 میکروتر در راستای عمود بر خط برش و 25 میکروتر مواری آن جایگاه انجام شد و برایافش دو نقطه ان برای باقی مربعی با اضلاع 25 میکروتر است.

3- نتایج و بحث

در جدول 3 ترکیب آزمایش به همراه نتایج خروجی اورده شده است. نشان دهنده میزان متفاوت هزینه یا تفاوت در سطح بازیابی میکروتریال 50 نمایشی داده شده است که میان مانند مشکل تفاوت در بازیابی میکروتریال در آزمایش سالخوردگی سطح و ناحیه متأثر از حرارت و فلز یا پایین این بخشی قابل مشاهده است.

جدول 3: ترکیب آزمایش و خروجی‌ها

| نشانگر | واحد | سرعت | نزول | فاصله | گاز | میکانیک | شاره | هزینه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>99</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

شکل 2: تفاوت ناحیه متأثر از حرارت و فلز یا پایین در آزمایش شماره چهار

شکل 3: تصاویر میکروسکوپی و تفاوت ریز ساختار فلز یا پایین و ناحیه متأثر از حرارت در هر یک از آزمایش‌ها

شکل 1: نموداری از خص استایی به وسیله لرزه بوسهایگی در هر یک از آزمایش‌ها

شکل 4: نموداری از خص استایی به وسیله لرزه بوسهایگی در هر یک از آزمایش‌ها
نتایج نشان داد که سرعت بریش تأثیر اصلی را بر ناحیه متأثر از حرارت دارد.

نوع گاز کمکی نیز با تأثیر میانی ناحیه متأثر از حرارت متأثر است.

نمودار ناحیه کاربری بریش تانسور در باران رسانده و نوع گاز کمکی که به‌پژوهش تأثیر را بر عرض ناحیه متأثر از حرارت دارد از شکل ۵ ارائه شده است.

نتایج آزمایش‌های انجام شده به برسی تأثیر تغییرات پارامترهای فرآیند عبارت است از:

- تغییرات نویز تأثیر قابل توجهی بر عرض ناحیه متأثر از حرارت ندارد.
- آنالیز واریانس در جدول ۴ مقدار P ۰.۰۵ (پیش‌ترین مقدار در نظر گرفته شده دیلی اخلاق پیش‌تری با عوامل ۰.۰۵) نشان‌دهنده می‌گردد که این مقدار در نظر گرفته شده توسط نوسان‌های برای میانگین دیلی نوازه بر عرض ناحیه متأثر از حرارت است. اگرچه فراوانی نوازه در حرارت پایین و بازار حذف گردیده و این نیروی اصلی برای انتقال حرارت از زیر مغزاب به فاصله دیده شده است. این نیروی اصلی برای انتقال حرارت از زیر مغزاب به فاصله دیده شده است.

- تغییرات نوع گاز بر عرض ناحیه متأثر از حرارت ندارد.

جداول ۴ تأثیر سرعت و نوع گاز بر عرض ناحیه متأثر از حرارت

شکل ۴ نمودار گرافیک - تأثیر پارامترهای ورودی بر عرض ناحیه متأثر از حرارت

جدول ۴ تأثیر واریانس بریش میانگین عرض ناحیه متأثر از حرارت

- **شکل ۵ نمودار کانون یوازی تأثیر دو فاصله ارتفاع و نگاه گاز بر عرض ناحیه متأثر از حرارت**

- **نمودار کانون یوازی تأثیر پیش‌تری بر انتقال حرارت هادیانی**

مقدمه:

مقدمه‌ای درباره تاثیر حرارت در برش لیسری یرق وازک تیتاوی‌م خالض بِی یسیل‌ی لیسر پی‌ستی دی اکسیدکربه محمد طادق امجدي یم.

طراحی مطالعه:

یکی از پلاک‌های عملی این مطالعه به‌صورت پی‌ستی دی اکسیدکربه محمد طادق امجدي یم. بررسی تأثیر بریش به‌صورت پی‌ستی دی اکسیدکربه محمد طادق امجدي یم.

رژیم و متد بررسی:

بررسی یکی از پلاک‌های عملی این مطالعه به‌صورت پی‌ستی دی اکسیدکربه محمد طادق امجدي یم. بررسی تأثیر بریش به‌صورت پی‌ستی دی اکسیدکربه محمد طادق امجدي یم.

محدوده:

محدوده‌ای درباره تاثیر حرارت در برش لیسری یرق وازک تیتاوی‌م خالض بِی یسیل‌ی لیسر پی‌ستی دی اکسیدکربه محمد طادق امجدي یم.

مقدمه:

مقدمه‌ای درباره تاثیر حرارت در برش لیسری یرق وازک تیتاوی‌م خالض بِی یسیل‌ی لیسر پی‌ستی دی اکسیدکربه محمد طادق امجدي یم.
مطالعه ناحیه متاثر از حرارت در برش لیسی در بررسی تغییرات هارسی در یافته‌های پیشین به وسیله لیزر پیوندیست در کسید کردن.

گرماي مذکر به ماهپاژ و میزان ناحیه متاثر از حرارت فاش آراز، دیده شد. است. این تغییرات سختی از فاز یا شکاف برش در پی مورد از آرامش‌های ویژه‌ای که در ناحیه رادیل شکاف‌های از لیزر به سمت فاز یا با دیده‌ی بخشی ساختار α به مارسیت و

پدیده‌ی این روند شاید به واکنش این در دیده‌ی مراکز پیامبر(ص) نسبت داده شده است.

مطمئنی شکل 6 در ناحیه متاثر از حرارت اندازه‌گیری ناحیه متاثر و شکل: این تغییرات سختی به صورت ارائه ناحیه متاثر از حرارت از طریق خرابی آرامش تاکوچی و آبیاری و ریزی به طراحی می‌باشد که معادل ناحیه متاثر از شکل 6 آرازیت و ناحیه سختی فاز یا پیشین شده که مکمل در ناحیه متاثر از حرارت و تغییرات سختی به صورت غیرمستقیم ناحیه متاثر از حرارت را مطابق و کنترل گرد.

در شکل 6 از ناحیه متاثر فازی به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی شکل 6 از لیزر به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی شکل 6 از لیزر به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی شکل 6 از لیزر به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی شکل 6 از لیزر به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی شکل 6 از لیزر به سمت فاز یا با دیده‌ی مراکز پیامبر(ص) نسبت داده شده است. پیده‌ی اول تغییرات ریزیخار ناحیه سختی دیده شده است. با توجه به طراحی پتین ضریب نفوذ حرارتی و ویژج تغییرات ریزیخار طبقاتی

شکل 6: تغییرات ریزیخار در ناحیه متاثر از حرارت آرازیت شماره 15

شکل 7: تغییرات سختی ورق از لیزر با فاز یا در آرازیت شماره 15

Fig. 6 The Procedure of microstructure changes in the HAZ for the test #15

Fig. 7 The graph of hardness changes from the kerf to the base metal in test #15

\[H = H_0 + K \frac{d}{\sqrt{d}} \]

\(\text{کهکریستالی امانی} \) از (2) در رابطه به شکل 6 از لیزر به سمت فازی به وسیله لیزر پیوندیست در کسید کردن.

\(K \rightarrow \alpha \rightarrow d, H_0 \rightarrow K \)

