The analysis of natural convection flow with radiation for a medium inside a triangular enclosure using natural element method

Hassan Hadadi, Cyrus Aghanajafi, Farschad Torabi

Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
* F.O.B. 19395-1999 Tehran, Iran, ftorabi@kntu.ac.ir

Abstract
In this paper the natural element method is employed to study conductive, convective and radiative heat transfer for laminar flow in a triangular enclosure. The natural element method is referred to as natural neighbor Galerkin method and is considered as a meshless numerical method. The shape functions used in natural element method, which are based on the Voronoi diagram of a set of nodes, are attentively interpolant; and the essential boundary conditions can be imposed by directly substituting the corresponding terms in the system of equations. In this paper, for solving radiative transfer equation if approximation is used. Effects of different parameters such as Rayleigh number for non-radiation and Planck number and mean temperature for radiation are considered. It is shown that increasing the Rayleigh number increases the strength of free convection regime and consequently increases the value of convective heat transfer rate. It is also revealed that decreasing the Planck number and mean temperature increases the strength of Radiation regime and consequently increases the value of radiative heat transfer rate. Results for natural element method are compared with the other studies reported in the literature. By comparison, it is shown that natural element method is efficient, accurate and stable, can be used for heat transfer and fluid flow.

Keywords: Natural Element Method, Triangular Enclosure, Radiation

1. Introduction

The study of natural convection flow and radiation is of great importance in various fields such as engineering, physics, and environmental science. The natural convection flow is the natural movement of fluids due to temperature differences, which is a common phenomenon in many applications such as heat exchangers, cooling systems, and cooling of electronic devices. Radiation is another important mechanism of heat transfer, which occurs due to the electromagnetic waves emitted by hot objects. The combination of natural convection and radiation is particularly important in applications where both mechanisms are significant, such as in the design of cooling systems for electronic devices or in the study of heat transfer in industrial processes.

The natural element method (NEM) is a meshless numerical method that is based on the Voronoi diagram of a set of nodes. It is known for its ability to accurately interpolate between nodes, which makes it suitable for solving complex problems where traditional mesh-based methods may struggle. In this paper, the natural element method is employed to study the natural convection flow and radiation for a medium inside a triangular enclosure, which is a common geometry in many applications.

The study aims to investigate the effects of different parameters such as the Rayleigh number (for non-radiation) and the Planck number (for radiation) on the natural convection flow and radiation. The results obtained from the natural element method are compared with other studies reported in the literature, and it is shown that the natural element method is efficient, accurate, and stable, and can be used for both heat transfer and fluid flow.

Please cite this article using:
Methods Based On Weak-Form
3- Natural Element Method
4- Sibson
5- Laplace
6- Shape Function
7- Voronoi Diagram

210...
دقت بهتری نسبت به درون بازی لایاس دارد ولی از نظر هزینه محاسباتی و زمان محاسبات درون بازی لایاس بسته به استمال لایاس و درون بازی نیز این است. در حالی که با میزان جایگاه درون بازی لایاس، روش درون طبقه‌بندی نیز نابه‌کارگیری‌کننده است. در واقع این است که روش درون طبقه‌بندی را با نتایج تحلیل مقایسه کردن و ناشناخته داده که روش درون طبقه‌بندی کاهش نسبی از روی داده را در نظر نمی‌گیرد. بنابراین در روش درون طبقه‌بندی ممکن است این روش به سبب شکست نباشد.

لیگ‌های استاد تدبیری را برای شبکه در مرحله‌ای از انلاین تک توری یک بار کنند. راهنما و سیستم تبادل روش درون طبقه‌بندی برای ارسال داده‌های ناشناخته در نظر گرفته شده که با روش درون طبقه‌بندی دقیق و نسبت به یک برای حذف مدل و از نظر داده‌های ناشناخته در هندسه دیده‌می‌شود.

\[
\begin{aligned}
X &= \frac{L}{T} = Y, \\
u &= \frac{U}{a}, \\
v &= \frac{VL}{a}, \\
P &= \frac{pL^2}{\rho a^2}, \\
T_m &= T_H + \frac{T_c}{2}, \\
\theta &= \frac{T - T_m}{T_H - T_c}, \\
Pr &= \frac{\theta}{\alpha}, \\
N_C &= \frac{K_{d}D}{\pi \sigma T_m^2}, \\
R_a &= \frac{\beta (T_H - T_l) L^3}{\mu a^2}, \\
T_U &= \theta T_H - \theta T_c,
\end{aligned}
\]

\[\begin{aligned}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \\
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} &= \frac{\partial}{\partial y} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + Pr \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + Pr \theta (0 + 0.5), \tag{2}
\end{aligned}\]

\[\begin{aligned}
\frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial y} &= \frac{\partial}{\partial y} \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} \right) + \frac{1}{\rho \theta m} \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} \right) \tag{5}
\end{aligned}\]

\[\begin{aligned}
\frac{\partial ^2 \theta}{\partial x^2} + \frac{\partial ^2 \theta}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial ^2 \theta}{\partial x^2} + \frac{\partial ^2 \theta}{\partial y^2} \right) \tag{6}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{7}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{8}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{9}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{10}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{11}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{12}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{13}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{14}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{15}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{16}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{17}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{18}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{19}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{20}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{21}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{22}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{23}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{24}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{25}
\end{aligned}\]

\[\begin{aligned}
u &= c = 0, \\
u &= c = 0, \\
u &= c = 0, \tag{26}
\end{aligned}\]
در این مطالب بروز رسانی آنلاین می‌تواند بخواهد بیشترین اثرات رهگیری را داشته باشد.

1. Delaunay Triangulation
(24) \[
\phi_{a/p}^{I}(x) = \frac{s_i(x)/h_i(x)}{\sum_{j=1}^{n} [s_j(x)/h_j(x)]}
\]
در روش الگویی متغیرهای میدان در هر نقطه دخواه، از (x, y, z) تا (x) دامنه مساوی با استفاده از مقادیر تابع در گره‌های میدان در یک دامنه پیشنهادی مخلوط کوچک به صورت روابط (25) و (29) درون‌پایه می‌شوند.

(25) \[
u(x) = \sum_{i=1}^{n} \theta_i(x) u_i
\]

(26) \[
u(x) = \sum_{i=1}^{n} \theta_i(x) v_i
\]

(27) \[
\theta(x) = \sum_{i=1}^{n} \theta_i(x) \theta_i
\]

(28) \[
P(x) = \sum_{i=1}^{n} \theta_i(x) P_i
\]

(29) \[
I(x) = \sum_{i=1}^{n} \theta_i(x) I_i
\]

توابع شکل روش الگویی طبقه‌بندی نابع دلتهای کوچک را دارد. در این خاصیت نابع دلتهای کوچک به آن معنی است که درون‌پایه روش الگویی از میدان مقادیر گره عبور کرده و به همین دلیل شرایط مرزی اساسی را می‌توان به‌طور مستقیم در معادلات اعمال کرد.\[26\]

(24) کومن‌سازی‌ی معادلات

حل عددی معادلات شامل کومن‌سازی معادلات و ایجاد یک دستگاه معادلات جبری برای مقادیر کمیت‌های مچه‌ای در نقاط خاصی از میدان حل است در روش الگویی برای کومن‌سازی معادلات از روش گالرکین استفاده می‌شود. روش گالرکین بر اساس روش گالرکین دیفرانسیل، با استفاده از روش گالرکین می‌توان بسیاری از معادلات را حل کرد و به جواب دقیق رسید. اما استفاده از روش گالرکین برای کومن‌سازی ترکیبی جایگاهی، نمی‌توان به نوسانی بشنوی به داده‌های یکی از روش‌های موجود در روش الگویی محدود برای مقایسه با نوسانات فضایی، روش گالرکین یک توصیفی \[33\] می‌باشد. با توجه به اینکه معادلات مونتیم به‌طور برداری هستند، فرم مستقیم روش CGS برای حل معادلات مونتیم دسترسی است.\[1\]

(25) \[
\text{شکل 5}
\text{نمودار ورودی مربوط به نقطه دخواه}
\]

Chicago Manual of Style, 15th Edition

1 - Characteristic Galerkin Scheme

(32) کومن‌سازی‌ی معادلات

با توجه به مطالعه درون‌پایه لااباس [22] در این مطالعه از دیور‌پایه لااباس استفاده و فقط درون‌پایه لااباس شده داده می‌شود. درون‌پایه لااباس بر اساس محسوب‌های طول‌های ورودی ورودی، برای استفاده نیاز به شکل لااباس برای گره α در نقطه x [23]

(23) \[
\alpha_i(x) = \frac{s_i(x)}{\sum_{j=1}^{n} s_j(x)}
\]

در رابطه (22) و رابطه (23) \[23\] شکل لااباس مربوط به گره α, s_i $\alpha_i(x)$ نشان‌دهنده طول (مسافت) بازی بین نیروی مربوط به گره α و تعداد n همسایه‌های طبیعی نقطه x است. به‌طور مثال، نیاز به شکل لااباس مربوط به گره α در نقطه x با توجه به شکل 5 از رابطه (24) بدست می‌آید.

(24) \[
\phi_{1/p}^{I}(x) = \frac{\alpha_i(x)}{\sum_{j=1}^{n} \alpha_j(x)}
\]

در رابطه (22) و رابطه (23) \[23\] شکل لااباس مربوط به گره α, s_i $\alpha_i(x)$ نشان‌دهنده طول (مسافت) بازی بین نیروی مربوط به گره α و تعداد n همسایه‌های طبیعی نقطه x است. به‌طور مثال، نیاز به شکل لااباس مربوط به گره α در نقطه x با توجه به شکل 5 از رابطه (24) بدست می‌آید.
\[K_{Mij} = \frac{\Delta t}{2} \int_{A} \left(\sum_{k=1}^{n} \phi_k v_k \right) \frac{\partial \phi_i}{\partial x} dA + \frac{\Delta t}{2} \int_{A} \left(\sum_{k=1}^{n} \phi_k v_k u_k n \right) \frac{\partial \phi_j}{\partial y} dA \]

\[K_{M_Rij} = \Delta t \int_{A} \left(\sum_{k=1}^{n} \phi_k v_k n \right) \frac{\partial \phi_i}{\partial x} dA + \Delta t \int_{A} \left(\sum_{k=1}^{n} \phi_k v_k u_k n \right) \frac{\partial \phi_j}{\partial y} dA \]

\[K_{Rij} = K_{R_{ij}} = K_{P_{ij}} = \int_{A} \frac{\partial \phi_i}{\partial x} dA + \int_{A} \frac{\partial \phi_j}{\partial y} dA \]

\[K_{M_{ij}} = \frac{1}{2} \int_{A} \phi_i n \, dA \]

\[B_{ij} = \frac{4}{\theta} \int_{A} \left(\sum_{j=1}^{n} \phi_j \left(\theta_{j}^{n+1} + \theta_{m} \right) \right) dA \]

\[\bar{\phi}(x) = \frac{n}{n} \sum_{j=1}^{n} \phi_j, \quad h(x) = \frac{n}{n} \sum_{j=1}^{n} \phi_j \]

\[F_{\theta ij} = \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial n} u_j \right) n_1 \, dI + \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial y} n_2 \right) n_2 \, dI \]

\[F_{ij} = \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial n} p_j \right) n_1 \, dI + \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial y} p_j \right) n_2 \, dI \]

\[F_{ai} = \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial n} p_j \right) n_1 \, dI + \int_{A} \phi_i \left(\sum_{j=1}^{n} \frac{\partial \phi_j}{\partial y} p_j \right) n_2 \, dI \]

\[F_{P_{ij}} = 3 \Delta t \int_{A} \phi_i \phi_j (n_1 + n_2) \, dI \]

\[\text{cheme based Split Scheme} \]

1. Characteristic-based Split Scheme
همان طور که در شکل 6 مشاهده می‌شود سرعت همگرایی قطار نسبت به سیار مغناطیسی می‌باشد. همین‌طور در شکل 6 مشاهده می‌شود که روش‌‌های مهندسی دارای توانایی خوبی است.

2-5 - بررسی استقرار نتایج نسبت به تعادل گره

همان‌طور که از آرای شکل 7-8 مشاهده می‌شود، نتایج نسبت به تعادل گره در شکل 7 مشاهده می‌شود. حاویانه توانایی برای بررسی کاهش اثرات بحث در این نوع سیستم است. در شکل 7 نتایج در حالت ملثی از تعادل گره آتمن است.

3-5 - اعتبارسنجی نتایج با مطالعات میشین

در این قسمت بررسی این آزمایشات نتایج در حالت آبیاری، نتایج مطالعه حائز بر مطالعه آزمایش (16) مقایسه می‌شود. نتایج مطالعه حائز بر مطالعه آزمایش (16) که در شکل 8 نشان داده شده است. حاویانه در این نوع سیستم است. در شکل 7 نتایج در حالت ملثی از تعادل گره آتمن است.

4-5 - بررسی مدل‌های روش‌های مغناطیسی

هفته از این قسمت بررسی مدل‌های روش‌های مغناطیسی است. مقدار خطا در مرحله زمانی از فرمول (54) بدست می‌آید [31] (54)

\[
\frac{N_{\text{تغییر اصلی}} - N_{\text{بی‌تغییر}}}{N_{\text{بی‌تغییر}}} = \frac{1}{\Delta t} \sum_{i=1}^{N_{\text{تغییر}}} \phi_i^{n+1} - \phi_i^n
\]

تا زمانی که مقدار خطا در رابطه (54) باز می‌شود، نتایج در شکل 7 نشان داده است. در این مطالعه، مقدار خطا در حالتی که \(N_{\text{تغییر}} = 0.1 \) و \(N_{\text{بی‌تغییر}} = 10^5 \) است. در این مطالعه، مقدار خطا در حالتی که \(N_{\text{تغییر}} = 0.1 \) و \(N_{\text{بی‌تغییر}} = 10^5 \) است. در این مطالعه، مقدار خطا در حالتی که \(N_{\text{تغییر}} = 0.1 \) و \(N_{\text{بی‌تغییر}} = 10^5 \) است. در این مطالعه، مقدار خطا در حالتی که \(N_{\text{تغییر}} = 0.1 \) و \(N_{\text{بی‌تغییر}} = 10^5 \) است.
در شکل 8 مقایسه برقراری رابطه در خط افقی در وسیع حفره برابر مقطع حفره با استفاده از روش مناسب و مقطع حفره آزادی [16]. در حالتی که

\[H/D = 6 \]

\[Pr = 0.0261 \]

کار باسک و همکارانش [9] در حفره مناسب مقطع حفره خارج است

\[y = 0.5 \]

\[\theta_0 = 45^\circ \]

\[Ra = 10 \]

\[R = 0.36 \]

\[d = 1.5 \]

\[W = 0.9 \]

\[r = 0.2 \]

\[N = 0 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]

\[0 \]

\[1 \]

\[10 \]
حرارت نابینی قرار نمی‌گیرد است و به‌طور مشابه حرارت نابینی افزایش می‌یابد.

با مقایسه خطوط هیدما در شکل 11 مشاهده می‌شود که در عده‌های با رابطه پایین خطوط هیدما صف و به‌صورت غیربهم‌وسیع در طول حرارت توزیع شده‌اند، این دیدهی نشان می‌دهد که در حالت بدون تابش و عده‌های باریک افزایش در حرارت نابینی بر جریان غالب است. خطوط هیدما با افزایش عده رایلی به سمت دیواره سرد شرکت می‌کنند و در حرارت نابینی می‌باشد.

با مقایسه خطوط هیدما در شکل 12 مشاهده می‌شود که در حالت و باریکات و رابطه پایین نشان می‌دهد که در حالت تابش و عده‌های باریک، آمار حرارت داخل دیواره در این فاصله نشان می‌دهد تأثیر جریان بر این تابش با کاهش افزایش می‌یابد.

به‌طور مشابه در شکل 14 تغییرات عده نتیجه بر حسب N_{CR} در حالتی که $q_r = 0$ باشد، نشان داده شده است. ولی در $q_r = 0.71$ و $E_{i} = 1.06$ و $E_{m} = 2$ و $Re = 10^{5}$، نشان داده است.

در شکل 12 مشاهده می‌شود که با کاهش N_{CR} در مقدار مطلق نابینی در مرکز زمین‌نما گردیده‌ای افزایش می‌یابد و مرکز زمین‌نما به مرکز هزینه معادل مقطع نزدیک می‌شود. این رفتار جریان با کاهش N_{CR} نشان می‌دهد که جریان در داخل حرارت تحت تأثیر انتقال حرارت را می‌کاهش.
در شکل 14-الف و ب مشاهده می‌شود که نرخ انتقال حرارت در گوشته‌های پایین حرارت به دلیل تابعیتی در شرط مرزی دما، بسیار بالا است و در هر عدد بالاکن انرژی مصرف یا داده در گوشته‌های پایین حرارت بیشترین مقادیر را دارد. همچنین نرخ انتقال حرارت و تابی در دیواره سرد در وسط آن و در دیواره گرم در گوشته بالای حرارت کمتری مقادیر را دارد. در شکل 14-ج مشاهده می‌شود که نرخ انتقال حرارت ناشی از ارتقاء بر انتقال حرارت داخل حرارت ندارد و کاهش Nu ناپایدار را در سطح و در دیواره گرم می‌باشد و کاهش NCR ناشی از ارتقاء بر می‌تواند در دو اثر دیواره سرد و فشرده شدن دامنه و بیشتر دمای می‌شود. این نکته مهم در پایه‌های انتقال حرارت از دیواره سرد و در نتیجه نرخ انتقال حرارت می‌باشد.

شکل 14-الف تغییرات عدد نرخ انتقال حرارت بر حسب عدد بالاک

شکل 14-ب نسبت متوسط

شکل 14-ب نسبت متوسط

شکل 14-ب نسبت متوسط

شکل 14-ب نسبت متوسط

شکل 14-ج کاهش خطای هم‌ارز در عدد نرخ انتقال حرارت بالاک مختلف
روش‌های طبیعی از دو گروهی هماهنگی طبیعی برای ساخت‌تولیدی شکل استفاده می‌شود. در گروهی هماهنگی طبیعی براساس نمودار برونی و متقابلی دلیل است که یک جزئی از نانوی اندیس کیمیاء در روش‌های طبیعی، دو درون‌بایی خاصی به‌عنوان خاصی می‌باشد که در این مطالعه مورد بررسی قرار گرفته‌است.

مطالعه باعث شده که با افزایش بسیار نسبی میزان متوسط هم‌نیمن نسبت به در هر دو روش داده شده باشد که میزان سطح متوسط تأخیر در دو روش کشش و در دو روش گرم برای پیوستی نتایج به‌این‌گونه است. برای بررسی روی‌ساخت در یک مطالعه طبیعی به‌عنوان نسبی قرار گرفته‌است که در این مطالعه مورد بررسی قرار گرفته‌است.

- تيتچ گری کلی
روش‌های طبیعی در دو مراحل روش‌های دو محدود و روشن‌های دو می‌باشد و دارای پروتکسیون دیگری است و در این مطالعه پلاک کمک به انتقال حرارت جابجایی و هدایت نتایج کمی از انتقال حرارت کل دارند.

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

شکل 15 تغییرات نسبی متوسط برهمکنش دنبال می‌باشد. روش‌های طبیعی برای ساخت‌تولیدی شکل استفاده می‌شود. در گروهی هماهنگی طبیعی براساس نمودار برونی و متقابلی دلیل است که یک جزئی از نانوی اندیس کیمیاء در روش‌های طبیعی، دو درون‌بایی خاصی به‌عنوان خاصی می‌باشد که در این مطالعه مورد بررسی قرار گرفته‌است.

