شناسایی دو بعدی ترک‌خوردگی لرزه‌ای سد بینی وزنی مبناهای روش ال‌پی‌آم محدود
توسعه بایته و تبدیل موجک

سجاد پیربوداغی۱، رضا تارینی‌زاده۲، مهندسی مکانیک مدرس
مهدی‌نژاد ۳

چکیده
در این تحقیق شناسایی ترک‌خوردگی‌های لرزه‌ای در سد بینی وزنی روش ال‌پی‌آم محدود توسط بایته و تبدیل موجک، بررسی گردید. در این مطالعه، ابتدا مدل سه بعدی سد بینی وزنی و ترک‌خوردگی‌های لرزه‌ای آن مورد بررسی قرار گرفتند. سپس، تأثیر این ترک‌خوردگی‌های لرزه‌ای بر حرکت ترک‌خوردگی‌های لرزه‌ای دیگر و حرکت دام در طول زمان مورد بررسی قرار گرفت. نتایج نشان داد که ترک‌خوردگی‌های لرزه‌ای در سد بینی وزنی می‌تواند تأثیر بزرگی در حرکت دام و نیز حرکت ترک‌خوردگی‌های لرزه‌ای دیگر داشته باشد.

کلمات کلیدی: ترک‌خوردگی، لرزه‌ای، سد بینی وزنی، تبدیل موجک

ARTICLE INFORMATION
ORIGINAL PAPER: P.B. 5166616471, Tabriz, Iran, r_tarinejad@tabrizu.ac.ir

Abstract
In the current study, seismic cracking identification of concrete dams is conducted based on extended finite element method (XFEM) and Wavelet (WT) transform. First, the dam is numerically modeled and analyzed using the finite element method (FEM). Then, cracking capability to the dam structure is added by applying the XFEM without introducing the initial crack, and the dam is analyzed under the seismic excitation. In fact, the whole dam structure is potentially under damage risk, and any zone reaching the fracture limit, begins to crack, which grows in the structure. This crack is usually unpredictable and it is not easy to detect, therefore the structural modal parameters and their variation should be investigated based on the structure response by using time-frequency transform. Results show that, investigating time-frequency window of the structure response and model parameters obtained from the numerical model, the history of physical changes occurred in the structure, cracking initiation time, and damage frequency window of the structure response and model parameters obtained from the numerical model, based on structure response by using time-frequency transform. Results show that, investigating time-frequency window of the structure response and model parameters obtained from the numerical model, the history of physical changes occurred in the structure, cracking initiation time, and damage frequency window of the structure response and model parameters obtained from the numerical model, based on structure response by using time-frequency transform.
208

فیضی و بیره حامل شود (11) چین کویی اخرا مورد توجه 우ضی از محققین بوده است (12).

در سال 2014 لازم به حضور سازمان در این مدلی در بخش نیرو می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

در سال 2014 لازم به حضور سازمان در این مدلی در بخش نیرو می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)

شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه شاید مقاله یا متنی را مورد توجه یا بهبود در مقایسه

2014-2015 زمان است.

قلمی و اکثریت سایت‌ها می‌باشد که البته می‌تواند در نظر گرفته شود.

مکانیسم شناسایی کیفیت طبیعی که در این مدل، توسط شکل‌گیری رشد رشد برای این روش‌ها، یک نمونه

رخ دیده با یک روش بررسی این اکی طرح؛ اگر آن است که در این روش از انرژی شناسایی مکانیسم شناسایی و

وضعیت‌های مکانیسم قابل استفاده و بهبود ساختار سازقاً نام

فراوانی شده است. این سیستم‌ها به طور متن باکی به دست آمده است.

و به‌پایه سازگاری اندیشید.

فیضی و بیره حامل شود (11)
گره‌های اطراف المان‌های تمام‌پوش به‌رده که سیستم تک‌تک ترتیب تک دسته می‌آورد و برای ترتیب به نظر انتقال مربوط به المان‌های تحت‌ریز، سیستم تک‌تک ترتیب تک دسته می‌آورد. جراید معلوم در نظر انتقال مربوط به المان‌های تحت‌ریز، سیستم تک‌تک ترتیب تک دسته می‌آورد. برای اتصال قبلی، نگه‌داشته‌ها در مورد جراید معلوم در نظر انتقال مربوط به المان‌های تحت‌ریز، سیستم تک‌تک ترتیب تک دسته می‌آورد.

(1) \[u = \sum_{i=1}^{N_1} \sum_{j=1}^{M} \psi_i \alpha_{ij} \]

(2) \[v = \sum_{i=1}^{N_2} \sum_{j=1}^{M} \psi_i \beta_{ij} \]

در روش‌های ۱ و ۲، جراید معلوم در نظر انتقال مربوط به المان‌های تحت‌ریز، سیستم تک‌تک ترتیب تک دسته می‌آورد. برای اتصال قبلی، نگه‌داشته‌ها در مورد جراید معلوم در نظر انتقال مربوط به المان‌های تحت‌ریز، سیستم تک‌تک ترتیب تک دسته می‌آورد.
یکی از روش‌های زمان‌زمانه بردار، موجک موسیقی می‌باشد، از مهم‌ترین کاربردهای موجک در مهندسی عمران می‌توان به بررسی و تحلیل شناسایی‌های زنده، شناسایی سیستم‌های دیجیتالی، سیستم‌پردازش و بررسی اثرات

\[CWT_x(a,b) = \frac{1}{\sqrt{|a|}} \int \psi^*(\frac{t-b}{a}) x(t) \, dt \]

(7)

که در آن \(\psi \) یک جریان تابع با صفر میانگین است که می‌تواند برای عبارت‌های دیگر در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(t) = e^{-t^2/2\sigma^2} \]

(10)

که در آن \(\sigma \) می‌تواند برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(11)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(12)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(13)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(14)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(15)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(16)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(17)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(18)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.

\[\psi(x) = e^{-x^2/2\sigma^2} \]

(19)

که موثر برای موجک‌های سیگنال در زنده‌بردار، موجک و موجک در مهندسی عمران بکار رود.
این مقاله در مجله سر (کرکورد زلزله کوینا) به دو جزئی افتاده است و نیاز به بررسی دقیق و همچنین بررسی هر گونه مشخصاتی که مهم‌ترین فاکتور اصلی برای یافتن جزئیات مربوط به سیستم و سیستم مناسب برای پیشگیری از این پدیده‌ها و سیستم مناسب برای پیشگیری از این پدیده‌ها است.

- جدول 1: خواص سیستم

<table>
<thead>
<tr>
<th>خواص</th>
<th>مقدار</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراانرژی</td>
<td>0.103</td>
<td>متر</td>
</tr>
<tr>
<td>شکنی پایین</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.1390</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.000545</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10^{-7}</td>
<td></td>
</tr>
<tr>
<td>فاکتور پایین</td>
<td>اسپی</td>
<td></td>
</tr>
</tbody>
</table>

- شکل 4: طراحی ترمینالهای کوینا

- 1-4. سیستم بررسی و اثرات

سیستم کوینا با تعداد 103 متر در کشور هندوستان احداث شد. این سیستم در سال 1967 کوینا از پانزده تراکم‌های تماسی و جمعیت دیده است. همین‌طور سیستم کوینا در 16 تراکم‌های نسبت دارد. در آن سیستم کوینا با استفاده از نرم‌افزار آیکون مدلسازی و تحلیل می‌شود.

برای تحلیل اولیه سیستم با استفاده از مدل‌هایی که می‌تواند، شباهت و سیستم نیاز به شناخت دارد. در بخش 1 تحقیق حاضر به سیستم کوینا با استفاده از نرم‌افزار آیکون مدلسازی و تحلیل می‌شود.

- شکل 1: پایه‌های سیستم کوینا

- شکل 2: داده‌های سیستم کوینا

- شکل 3: جدول 1: خواص سیستم کوینا

- شکل 4: طراحی ترمینالهای کوینا

- شکل 5: خواص سیستم کوینا

جدول 1: خواص سیستم کوینا

<table>
<thead>
<tr>
<th>خواص</th>
<th>مقدار</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراانرژی</td>
<td>0.103</td>
<td>متر</td>
</tr>
<tr>
<td>شکنی پایین</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.1390</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.000545</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10^{-7}</td>
<td></td>
</tr>
<tr>
<td>فاکتور پایین</td>
<td>اسپی</td>
<td></td>
</tr>
</tbody>
</table>

- شکل 1: پایه‌های سیستم کوینا

- شکل 2: داده‌های سیستم کوینا

- شکل 3: جدول 1: خواص سیستم کوینا

- شکل 4: طراحی ترمینالهای کوینا

- شکل 5: خواص سیستم کوینا

جدول 1: خواص سیستم کوینا

<table>
<thead>
<tr>
<th>خواص</th>
<th>مقدار</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراانرژی</td>
<td>0.103</td>
<td>متر</td>
</tr>
<tr>
<td>شکنی پایین</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.1390</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.000545</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10^{-7}</td>
<td></td>
</tr>
<tr>
<td>فاکتور پایین</td>
<td>اسپی</td>
<td></td>
</tr>
</tbody>
</table>

- شکل 1: پایه‌های سیستم کوینا

- شکل 2: داده‌های سیستم کوینا

- شکل 3: جدول 1: خواص سیستم کوینا

- شکل 4: طراحی ترمینالهای کوینا

- شکل 5: خواص سیستم کوینا

جدول 1: خواص سیستم کوینا

<table>
<thead>
<tr>
<th>خواص</th>
<th>مقدار</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>پراانرژی</td>
<td>0.103</td>
<td>متر</td>
</tr>
<tr>
<td>شکنی پایین</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.1390</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>0.000545</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>ضریب پایین</td>
<td>10^{-7}</td>
<td></td>
</tr>
<tr>
<td>فاکتور پایین</td>
<td>اسپی</td>
<td></td>
</tr>
</tbody>
</table>
ترک خوردرگی باعث افزایش تغییرپیکان‌های سد شده است. ترک خوردرگی از ناحیه 3.92 گذشته و در ناحیه 4.52 منجر به گسیختگی بلوک بالایی سد می‌شود.

مطالعه شکل 7 مقادیر بیشتری نش در حالت خشکی بیشتر از حالت غیرخشکی است. ماکزیمم نش در اصل در نقطه A (از بلوک بالایی و پایینی پس از شکست) پس از شروع تنش و گسترش ترک کاهش پیدا می‌کند. بطوریکه نش در این بخش کمتر از آن با مصرف کامل حذف می‌شود. بنابراین گسترش ترک باعث نش در سطح و کاهش آن می‌شود به نحوی که میزان نش از ناحیه اصلی در بلوک بالایی نسبت به قسمت پایینی بیشتر کاهش یابد. نش در بلوک بالایی بیشتر از وزن کریم پس

Fig. 3 Koyna dam crack growth trend

Fig. 4 Experimental result of Koyna dam crack growth trend [20]

Fig. 5 The horizontal linear and nonlinear crest displacement

Fig. 6 The vertical linear and nonlinear crest displacement

Fig. 7 Linear and nonlinear Max. principal stress of point A

در اشکال 5 تا 7 به ترتیب مقایسه حالت خشک و غیرخشکی های افقی و عمودی ناج افتاده سد کوئنیا و نش در نقطه A (پایین سد) نشان داده شده است. مقایسه اشکال 5 و 6 نشان می‌دهد که گسترش ترک از جهت افقی در بدن سد 9.5 نسبت به گسترش ترک از جهت عمودی کمتر است. این نتیجه وجود دارد که گسترش ترک از جهت افقی در بدن سد 9.5 نسبت به گسترش ترک از جهت عمودی کمتر است. این نتیجه وضعیت مصرف در ناحیه اصلی در بدن سد 9.5 نسبت به گسترش ترک از جهت افقی در بدن سد 9.5 نسبت به گسترش ترک از جهت عمودی کمتر است.
شناختی از آن می‌تواند به همین ترتیب استخراج گردند. همچنین از اورژانس نیاز به صرفه جویی تحقق می‌باشد. در محدوده فرکانس 2.65 تا 2.85 هرتز و همچنین فرکانس 3 تا 3.15 هرتز از پانصد هرتز در محدوده 2.65 تا 2.85 هرتز، این اثر مشاهده می‌شود. در ادامه، نتایج تحقیق را در جدول 3 نشان می‌دهد:

<table>
<thead>
<tr>
<th>تغییرات نیروی زمینه (میلیوئت)</th>
<th>تغییرات توده (میلیوئت)</th>
<th>تغییرات دانشگاه (میلیوئت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65 ± 0.25</td>
<td>2.85 ± 0.25</td>
<td>3.05 ± 0.25</td>
</tr>
</tbody>
</table>

Fig. 8 The scalogram of dam crest horizontal displacement around the first natural frequency (Sec-Hz)

شکل 8 مقیاس تاپس گرافیکفرقانس اول ناحیه نزدیک به سد در محدوده فرکانس 2.65 تا 3.05 هرتز (بیش از 30 میلیوئت)

جدول 2 مقایسه فرکانس‌های طبیعی سد کوینا

<table>
<thead>
<tr>
<th>آبکس</th>
<th>تبدیل فرکانس</th>
<th>چوپر و کهکشان</th>
<th>یارمستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>2.93</td>
<td>3.07</td>
<td>3.10</td>
</tr>
<tr>
<td>8.03</td>
<td>8.32</td>
<td>8.20</td>
<td>8.20</td>
</tr>
</tbody>
</table>

شناختی از آن می‌تواند به همین ترتیب استخراج گردند. همچنین از اورژانس نیاز به صرفه جویی تحقق می‌باشد. در محدوده فرکانس 2.65 تا 2.85 هرتز و همچنین فرکانس 3 تا 3.15 هرتز از پانصد هرتز در محدوده 2.65 تا 2.85 هرتز، این اثر مشاهده می‌شود. در ادامه، نتایج تحقیق را در جدول 3 نشان می‌دهد:

<table>
<thead>
<tr>
<th>تغییرات نیروی زمینه (میلیوئت)</th>
<th>تغییرات توده (میلیوئت)</th>
<th>تغییرات دانشگاه (میلیوئت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65 ± 0.25</td>
<td>2.85 ± 0.25</td>
<td>3.05 ± 0.25</td>
</tr>
</tbody>
</table>

Fig. 8 The scalogram of dam crest horizontal displacement around the first natural frequency (Sec-Hz)

شکل 8 مقیاس تاپس گرافیکفرقانس اول ناحیه نزدیک به سد در محدوده فرکانس 2.65 تا 3.05 هرتز (بیش از 30 میلیوئت)

جدول 2 مقایسه فرکانس‌های طبیعی سد کوینا

<table>
<thead>
<tr>
<th>آبکس</th>
<th>تبدیل فرکانس</th>
<th>چوپر و کهکشان</th>
<th>یارمستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>2.93</td>
<td>3.07</td>
<td>3.10</td>
</tr>
<tr>
<td>8.03</td>
<td>8.32</td>
<td>8.20</td>
<td>8.20</td>
</tr>
</tbody>
</table>

شناختی از آن می‌تواند به همین ترتیب استخراج گردند. همچنین از اورژانس نیاز به صرفه جویی تحقق می‌باشد. در محدوده فرکانس 2.65 تا 2.85 هرتز و همچنین فرکانس 3 تا 3.15 هرتز از پانصد هرتز در محدوده 2.65 تا 2.85 هرتز، این اثر مشاهده می‌شود. در ادامه، نتایج تحقیق را در جدول 3 نشان می‌دهد:

<table>
<thead>
<tr>
<th>تغییرات نیروی زمینه (میلیوئت)</th>
<th>تغییرات توده (میلیوئت)</th>
<th>تغییرات دانشگاه (میلیوئت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65 ± 0.25</td>
<td>2.85 ± 0.25</td>
<td>3.05 ± 0.25</td>
</tr>
</tbody>
</table>

شکل 8 مقیاس تاپس گرافیکفرقانس اول ناحیه نزدیک به سد در محدوده فرکانس 2.65 تا 3.05 هرتز (بیش از 30 میلیوئت)

جدول 2 مقایسه فرکانس‌های طبیعی سد کوینا

<table>
<thead>
<tr>
<th>آبکس</th>
<th>تبدیل فرکانس</th>
<th>چوپر و کهکشان</th>
<th>یارمستر</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.01</td>
<td>2.93</td>
<td>3.07</td>
<td>3.10</td>
</tr>
<tr>
<td>8.03</td>
<td>8.32</td>
<td>8.20</td>
<td>8.20</td>
</tr>
</tbody>
</table>
Fig. 9 The scalogram of dam crest vertical displacement around the second natural frequency (Sec-Hz)

Fig. 10 The horizontal component of Koyna earthquake scalogram (Sec-Hz)

Fig. 11 The vertical component of Koyna earthquake scalogram (Sec-Hz)
شیب زمان شروع ترک‌خوردگی
با روشی پیشرفت‌جویی زمان ترک‌خوردگی سطح سازه به مدت ۰.۸ ثانیه از جمله ۰.۸ ثانیه سرین‌های خطی به دیده می‌شود. با استفاده از دیگر نیروهای از این زمان ترک‌خوردگی نیروی سطح می‌شود، به طور واضح زمان ترک‌خوردگی سیستم از ۲.۱ هرتز شروع به کاهش و به ترتیب کمتر شروع به مرز سه شکست می‌رسد. زمان سیستم ۱.۹۶ هرتز کاهش پیدا می‌کند و سپس رفته رفته‌ای از افزایش زمان کاهش می‌یابد و به مرز یاده‌ای بررسی در حالت پیش از ترک خورد کاملاً دیده و جدای بند و بلکاتی سد. کل سازه سیستم به دو دره تناوب بزرگتر

شکل ۱۲: نمودار ناگهانی زمان ترک خوردگی سطح سازه و نسبت ترک‌خوردگی مود دوم (ناهیده - هرتز)

شکل ۱۳: نمودار ناگهانی زمان ترک خوردگی سطح سازه و نسبت ترک‌خوردگی مود دوم (ناهیده - هرتز)
شناختی دو بعدی ترک-خوردگی درمانی سد بانی و زنگ بر سوال انرژی نسبت به میزان بازده و تبدیل موجک

به دست می‌آید. در شکل 14 مقایسه اشکال مودی سازه سالم و آسیب‌دهده با شهرت ایجاد و ترمیم‌برداری دیواره نسبت به ناحیه‌ای بنابراین مراحل 30 بار برای فرکانس اول و دوم ارائه شده است.

با توجه به دست‌رسیده، موجک تبدیل موجک گرافیکی با مشخصات مداوم تابع تبدیل موجک برای پردازش سیگنال بوده، اختلاف آن با نتایج نرم‌افزار آباکوس می‌تواند ناشی از عدم در نظر گرفتن جرم مولکول در نقاط مختلف باشد.

مکانیک شکل 14 نشان می‌دهد تبدیل موجک گرافیکی با مشخصات مداوم تابع تبدیل موجک برای پردازش سیگنال بوده، اختلاف آن با نتایج نرم‌افزار آباکوس می‌تواند ناشی از عدم در نظر گرفتن جرم مولکول در نقاط مختلف باشد.

شکل 14 مقایسه اشکال مودی سازه سالم و آسیب‌دهده با تبدیل موجک و نرم‌افزار آباکوس

Fig. 14 Comparison of first and second modal shapes of Koyna intact and cracked dam obtained from Wavelet transform and Abaqus software

\[f=3.01 \text{ Hz} \quad - \text{ABAQUUS} \]

\[f=8.03 \text{ Hz} \quad - \text{ABAQUUS} \]

[29] P. Rizos, N. Aspragathos, A. Dimarogonas, Identification of crack location...