مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

شبیه‌سازی عددی انتقال حرارت نانوسیال در یک لوله مجهز به نوار پیچشی با استفاده از مدل دوفازی اویلری- لاگرانژی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه حرارت و سیالات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران
2 پژوهشکده انرژی، دانشگاه کاشان، کاشان، ایران
3 گروه تبدیل انرژی، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران
چکیده
امروزه افزایش کارآیی و بهینه‌سازی سیستم‌های انرژی از نظر اقتصادی و زیست‌محیطی دارای اهمیتی ویژه‌ است. تاکنون روش‌های مختلفی برای افزایش انتقال حرارت در سیستم‌های حرارتی پیشنهاد شده است که از آن جمله می‌توان به استفاده از نانوسیالات و به‌کارگیری انواع مغشوش‌کننده‌های جریان سیال اشاره نمود. در مقاله حاضر، به‌کارگیری توأمان نانوسیال و نوارهای پیچشی به‌منظور ارتقای ضریب انتقال حرارت به‌صورت عددی بررسی شده است. در شبیه‌سازی عددی از یک مدل دوفازی اویلری- لاگرانژی استفاده شده است. همچنین، مدل‌های مختلف آشفتگی برای شبیه‌سازی آشفتگی سیال مورد بررسی قرار گرفت. نتایج نشان داد که افزایش کسر حجمی نانوذرات، کاهش نسبت پیچش و افزایش عدد رینولدز منجر به افزایش انتقال حرارت می‌شود. با کاهش نسبت پیچش از ۱۵ به ۵، مقدار انتقال حرارت از ۸ تا ۱۶% افزایش می‌یابد. با افزایش عدد رینولدز از ۱۰۰۰۰ به ۲۰۰۰۰، اختلاف دمای حداکثر مقاطع تا ۴/۵% کاهش را نشان می‌دهد. همچنین، مشاهده شد که با حرکت به سمت پایین‌دست جریان، مقدار اختلاف دمای حداکثر مقاطع کاهش می‌یابد. افزایش انتقال حرارت با حرکت بیشتر سیال و افزایش اثرات بیشتر نوار پیچشی به ‌سمت پایین‌دست از دلایل این کاهش هستند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical Simulation of Nanofluid Heat Transfer in a Tube Equipped with Twisted Tape Using the Eulerian-Lagrangian Two-Phase Model

نویسندگان English

Gh.A Sheikhzadeh 1
M. Nazififard 2
R. Maddahian 3
Kh. Kazemi 1
1 Department of Heat & Fluid, Mechanical Engineering Faculty, University of Kashan, Kashan, Iran
2 Energy Research Center, University of Kashan, Kashan, Iran
3 Department of Energy Conversion, Mechanical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
چکیده English

Today, increasing the efficiency and optimization of energy systems in terms of economic and environmental conditions is of particular importance. So far, several methods have been proposed to increase the heat transfer in thermal systems, including the use of nanofluids and types of fluid flow turbulators. In this research, the application of both nanofluid and twisted tape to improve the heat transfer coefficient were numerically investigated. Different turbulence models were used to simulate fluid turbulence. The results showed that increasing the nanoparticle volume fraction, reducing the twisting ratio, and increasing the Reynolds number resulted in an increase in heat transfer. By reducing the twisting ratio from 15 to 5, the heat transfer rate increases from 8-16%. With rising Reynolds number from 10,000 to 20,000, maximum temperature differences decreases by 4.5%. Moving downstream of the flow, the difference between the maximum temperature of the sections decreases. Increasing the heat transfer and intensifying the effects of the twisted tape to downward are the reasons for this decline.

کلیدواژه‌ها English

Tube with twisted tape
Nanofluid
Turbulent flow
Forced Convection Heat Transfer
Two-phase Eulerian-Lagrangian model
Kumar Gupta N, Kumar Tiwari A, Kumar Ghosh S. Heat transfer mechanisms in heat pipes using nanofluids–A review. Experimental Thermal and Fluid Science. 2018;90:84-100. [Link] [DOI:10.1016/j.expthermflusci.2017.08.013]
Naik MT, Ranga Janardana G, Syam Sundar L. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. International Communications in Heat and Mass Transfer. 2013;46:13-21. [Link] [DOI:10.1016/j.icheatmasstransfer.2013.05.007]
Naik MT, Fahad SS, Syam Sundar L, Singh MK. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Experimental Thermal and Fluid Science. 2014;57:65-76. [Link] [DOI:10.1016/j.expthermflusci.2014.04.006]
Azmi WH, Sharma KV, Mamat R, Anuar S. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy procedia. 2014;52:296-307. [Link] [DOI:10.1016/j.egypro.2014.07.081]
Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Syam Sundar L. Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts. Applied Thermal Engineering. 2014;73(1):296-306. [Link] [DOI:10.1016/j.applthermaleng.2014.07.060]
Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Applied Thermal Engineering. 2014;70(1):896-924. [Link] [DOI:10.1016/j.applthermaleng.2014.05.062]
Eiamsa-ard S, Kiatkittipong K, Jedsadaratanachai W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Engineering Science and Technology, an International Journal. 2015;18(3):336-350. [Link] [DOI:10.1016/j.jestch.2015.01.008]
Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. International Journal of Heat and Fluid Flow. 2007;28(2):211-219. [Link] [DOI:10.1016/j.ijheatfluidflow.2006.04.006]
He Y, Men Y, Zhao Y, Lu H, Ding Y. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Applied Thermal Engineering. 2009;29(10):1965-1972. [Link] [DOI:10.1016/j.applthermaleng.2008.09.020]
Haghshenas M, Nasr Esfahany M, Talaie MR. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer. 2010;37(1):91-97. [Link] [DOI:10.1016/j.icheatmasstransfer.2009.08.003]
Bejan A. Convective Heat Transfer. 4th Edition. Hoboken: John Wiley & Sons; 2013. [Link] [DOI:10.1002/9781118671627]
Ounis H, Ahmadi G, McLaughlin JB. Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science. 1991;143(1):266-277. [Link] [DOI:10.1016/0021-9797(91)90458-K]
Saffman PG. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics. 1965;22(2):385-400. [Link] [DOI:10.1017/S0022112065000824]
Talbot L, Cheng RK, Schefer RW, Willis DR. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics. 1980;101(4):737-758. [Link] [DOI:10.1017/S0022112080001905]
Ranz WE, Marshall WRJr. Evaporation from drops, part II. Chemical Engineering Progress. 1952;48(173):173-180. [Link]
Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000. [Link] [DOI:10.1017/CBO9780511840531]
Nguyen VB, Nguyen QB, Zhang YW, Lim CYH, Khoo BC. Effect of particle size on erosion characteristics. Wear. 2016;348-349:126-137. [Link] [DOI:10.1016/j.wear.2015.12.003]
Salim SM, Cheah SC. Wall y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists IMECS 2009, March 18-20, 2009, Hong Kong. Hong Kong: Newswood Limited; 2009. [Link]
Patankar SV, Spalding DB. A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer. 1972;15(10):1787-1806. [Link] [DOI:10.1016/0017-9310(72)90054-3]
Van Doormaal JP, Raithby GD. Enhancements of the simple method for predicting incompressible fluid flows. Numerical Heat Transfer. 1984;7(2):147-163.
https://doi.org/10.1080/01495728408961817 [Link] [DOI:10.1080/10407798408546946]
Syam Sundar L, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer. 2010;53(7-8):1409-1416. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.12.016]
Shojaeefard MH, Tahani M. Introduction to turbulent currents and their its modeling. Tehran: Iran University of Science and Technology; 2012. [Persian] [Link]