1. Abramson HN. The dynamic behavior of liquids in moving containers, with applications to space vehicle technology [Internet]. Washington: NASA; 1966 [cited 15 Jan 2018]. Available from: https://ntrs.nasa.gov/search.jsp?R=19670006555 [
Link]
2. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society. 1977;181(3):375-389. [
Link] [
DOI:10.1093/mnras/181.3.375]
3. De Chowdhury S, Sannasiraj SA. Numerical simulation of 2D sloshing waves using SPH with diffusive terms. Applied Ocean Research. 2014;47:219-240. [
Link] [
DOI:10.1016/j.apor.2014.06.004]
4. Rouzbahani F, Hejranfar K. A truly incompressible smoothed particle hydrodynamics based on artificial compressibility method. Computer Physics Communications. 2017;210:10-28. [
Link] [
DOI:10.1016/j.cpc.2016.09.008]
5. Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. Journal of Computational Physics. 1995;116(1):123-134. [
Link] [
DOI:10.1006/jcph.1995.1010]
6. Zandi SM, Boroomand B, Soghrati S. Exponential basis functions in solution of incompressible fluid problems with moving free surfaces. Journal of Computational Physics. 2012;231(2):505-527. [
Link] [
DOI:10.1016/j.jcp.2011.09.016]
7. Zhang T, Ren YF, Fan CM, Li PW. Simulation of two-dimensional sloshing phenomenon by generalized finite difference method. Engineering Analysis with Boundary Elements. 2016;63:82-91. [
Link] [
DOI:10.1016/j.enganabound.2015.11.008]
8. Mossaiby F, Ghaderian M, Rossi R. Implementation of a generalized exponential basis functions method for linear and non-linear problems. International Journal for Numerical Methods in Engineering. 2016;105(3):221-240. [
Link] [
DOI:10.1002/nme.4985]
9. Mossaiby F, Bahonar MJ, Asadi A. Solving time-dependent problems using the generalized exponential basis functions method. Modares Mechanical Engineering. 2017;17(10):271-280. [Persian] [
Link]
10. Boroomand B, Soghrati S, Movahedian B. Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style. International Journal for Numerical Methods in Engineering. 2010;81(8):971-1018. [
Link]
11. Zandi SM. Fluid-structure interaction using exponential basis functions via a lagrangian meshless method [Dissertation]. Isfahan: Isfahan University of Technology; 2008. [Persian] [
Link]
12. Zandi SM. Nonlinear free surface flow with moving boundaries via a local meshless method using exponential basis functions [Dissertation]. Isfahan: Isfahan University of Technology; 2014. [Persian] [
Link]
13. Chen YH, Hwang WS, Ko CH. Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations. Earthquake Engineering and Structural Dynamics. 2007;36(12):1701-1717. [
Link] [
DOI:10.1002/eqe.713]
14. Faltinsen OM. A numerical nonlinear method of sloshing in tanks with two-dimensional flow. Journal of Ship Research. 1978;22(3):193-202. [
Link]
15. Wu GX, Ma QW, Taylor RE. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Applied Ocean Research. 1998;20(6):337-355. [
Link] [
DOI:10.1016/S0141-1187(98)00030-3]
16. Goudarzi MA, Sabbagh-Yazdi SR. Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dynamics and Earthquake Engineering. 2012;43:355-365. [
Link] [
DOI:10.1016/j.soildyn.2012.08.001]