Volume 19, Issue 9 (September 2019)                   Modares Mechanical Engineering 2019, 19(9): 2111-2120 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tahani M, Kazemi M, Babaie Z. Investigation of Aerodynamic and Heat Transfer Performance of Cylinders Using Plasma Actuators. Modares Mechanical Engineering 2019; 19 (9) :2111-2120
URL: http://mme.modares.ac.ir/article-15-21163-en.html
1- Aerospace Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran , m.tahani@ut.ac.ir
2- Aerospace Engineering Department, New Sciences & Technologies Faculty, University of Tehran, Tehran, Iran
Abstract:   (7102 Views)
Today, one of the useful methods of flow control, especially external aerodynamics, is plasma DBD actuators. In this study, the effect of plasma DBD actuators on cylinders in tandem arrangement is investigated. The actuators are considered on upstream cylinder. The cylinders are placed in distance (L/D) relative to each other. Investigation is done at two Reynolds number (100 and 200) with two different conditions of applying actuators. Cases with Vp-p=55kv and Vp-p=1kv are selected from references. The results of the present study are validated against the previous available experimental and numerical data and close agreement is found. Finite volume method is applied to solve equation of motion. Plasma actuators caused downstream cylinder experience upper values of drag coefficient and Nusselt number in all cases of study. Also, the growth of drag coefficient and Nusselt number are decreased by rising the Reynolds number, so that increasing the Nusselt number is 2% more at cases with Re=100 compared to cases with Re=200.
Full-Text [PDF 1503 kb]   (2425 Downloads)    
Article Type: Original Research | Subject: Aerodynamics
Received: 2018/05/22 | Accepted: 2019/01/29 | Published: 2019/09/1

1. Joshi SN, Gujarathi YS. A review on active and passive flow control techniques. International Journal on Recent Technologies in Mechanical and Electrical Engineering. 2016;3(4):1-6. [Link]
2. Gad-el-Hak M. Flow control: Passive, active, and reactive flow management. Cambridge UK: Cambridge University Press; 2000. [Link] [DOI:10.1017/CBO9780511529535]
3. Flatt J. The history of boundary layer control research in the United States of America. In: Lachmann GV. Boundary layer and flow control. 1st Volume. Oxford: Pergamon Press; 1961. pp. 122-143. [Link]
4. Joslin RD, Miller DN. Fundamentals and applications of modern flow control. Reston VA: American Institute of Aeronautics and Astronautics; 2009. [Link] [DOI:10.2514/4.479892]
5. El-Khabiry S, Colver GM. Drag reduction by dc corona discharge along an electrically conductive flat plate for small Reynolds number flow. Physics of Fluids. 1997;9(3):587. [Link] [DOI:10.1063/1.869219]
6. Roth J, Sherman D, Wilkinson S. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. 36th AIAA Aerospace Sciences Meeting and Exhibit, 12-15 January 1998, Reno, NV, USA. Reston VA: American Institute of Aeronautics and Astronautics; 1998. [Link] [DOI:10.2514/6.1998-328]
7. Corke TC, Enloe CL, Wilkinson SP. Dielectric barrier discharge plasma actuators for flow control. Annual review of fluid mechanics. vol. 2010;42(1):505-529. [Link] [DOI:10.1146/annurev-fluid-121108-145550]
8. Hanson RE, Houser NM, Lavoie P. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators. Journal of Applied Physics. 2014;115(4):043301. [Link] [DOI:10.1063/1.4862309]
9. Patel MP, Ng TT, Vasudevan S, Corke TC, Post M, Mc Laughlin TE, et al. Scaling effects of an aerodynamic plasma actuator. Journal of Aircraft. 2008;45(1):223-236. [Link] [DOI:10.2514/1.31830]
10. Kriegseis J, Simon B, Grundmann S. Towards in-flight applications? a review on dielectric barrier discharge-based boundary-layer control. Applied Mechanics Reviews. 2016;68(2):020802. [Link] [DOI:10.1115/1.4033570]
11. Mittal S, Kumar V, Raghuvanshi A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. International Journal for Numerical Methods in Fluids. 1997;25(11):1315-1344. https://doi.org/10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P [Link] [DOI:10.1002/(SICI)1097-0363(19971215)25:113.0.CO;2-P]
12. Meneghini JR, Saltara F, Siqueira CLR, Ferrari Jr JA. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures. 2001;15(2):327-350. [Link] [DOI:10.1006/jfls.2000.0343]
13. Ding H, Shu C, Yeo KS, Xu D. Numerical simulation of flows around two circular cylinders by mesh‐free least square‐based finite difference methods. International Journal for Numerical Methods in Fluids. 2007;53(2):305-332. [Link] [DOI:10.1002/fld.1281]
14. Mahír N, Altaç Z. Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. International Journal of Heat and Fluid Flow. 2008;29(5):1309-1318. [Link] [DOI:10.1016/j.ijheatfluidflow.2008.05.001]
15. Choi H, Jeon WP, Kim J. Control of flow over a bluff body. Annual Review of Fluid Mechanics. 2008;40(1):113-139. [Link] [DOI:10.1146/annurev.fluid.39.050905.110149]
16. Kozlov AV, Thomas FO. Plasma flow control of cylinders in a tandem configuration. AIAA Journal. 2011;49(10):2183-2193. [Link] [DOI:10.2514/1.J050976]
17. Kozlov AV, Thomas FO. Bluff-body flow control via two types of dielectric barrier discharge plasma actuation. AIAA Journal. 2011;49(9):1919-1931. [Link] [DOI:10.2514/1.J050793]
18. Igarashi T, Naito H, Fukagata K. Direct numerical simulation of flow around a circular cylinder controlled using plasma actuators. Mathematical Problems in Engineering. 2014;2014:591807. [Link] [DOI:10.1155/2014/591807]
19. Eltaweel A, Wang M, Kim D, Thomas FO, Kozlov AV. Numerical investigation of tandem-cylinder noise reduction using plasma-based flow control. Journal of Fluid Mechanics. 2014;756:422-451. [Link] [DOI:10.1017/jfm.2014.420]
20. Suzen Y, Huang G. Simulations of flow separation control using plasma actuators. 44th AIAA Aerospace Sciences Meeting and Exhibit, 9-12 January 2006, Reno, Nevada. Reston VA: American Institute of Aeronautics and Astronautics; 2006. [Link] [DOI:10.2514/6.2006-877]
21. Ji Sh, Zhang B, Li J, Wang G. Numerical study for active flow control using dielectric barrier discharge actuators. Journal of Aerospace Engineering. 2017;30(5):04017050. [Link] [DOI:10.1061/(ASCE)AS.1943-5525.0000764]
22. Bouchmal A. Modeling of dielectric-barrier discharge actuator: Implementation, validation and generalization of an electrostatic model [Dissertation]. Delft: Delft University of Technology; 2011. [Link]
23. Tritton DJ. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics. 1959;6(4):547-567. [Link] [DOI:10.1017/S0022112059000829]
24. Sa JY, Chang KS. Shedding patterns of the near‐wake vortices behind a circular cylinder. International Journal for Numerical Methods in Fluids. 1991;12(5):463-474. [Link] [DOI:10.1002/fld.1650120504]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.