Buckling analysis of stiffened composite cylindrical shell based on the modified smear method

Ali Talezadehli, Gholam Hosein Rahimi*

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

* P.O.B. 14117-13116 Tehran, Iran, rahimi.gh@modares.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 15 August 2015
Accepted 07 September 2015
Available Online 03 November 2015

Keywords:
Buckling
Stiffened composite cylindrical shell
Analytical method
Finite element (FE)

ABSTRACT

Due to high strength and stiffness-to-weight ratio of composite cylindrical shells, they are increasingly being used in different industries. Applying different types of stiffeners is one of the ways to improve the buckling resistance of these structures. In this paper new analytical method based on smear method is developed to analyze the stiffened composite shells. The main difference of this method and previous methods is on technique of combination of shell’s and stiffeners’ stiffness parameters, and calculating the equivalent stiffness parameters. In the suggested method a three layered shell is designed in such a way that this shell and stiffeners have the same volume and stiffness. Putting these layers under the main layers of shell, the equivalent stiffness parameters could be calculated easily. Using the Ritz energy method the critical load of axial buckling of shell is calculated. The method is verified using finite element ABAQUS package. The results show that the proposed method has less difference from finite element’s results compare to previous methods. In addition, the effects of different parameters on buckling load and special buckling load of stiffened shell is investigated. The results show that in order to have efficient stiffened structure; there must be an adequate number of ribs and unit cells. It also shows that, although adding stiffening ribs increase the buckling load of the shell, the special buckling load does not increase necessarily. The optimum angle for helical ribs is 30 to 40 degrees respect to axis of the cylindrical shell.

REFERENCES

Please cite this article using:

که تمام اجزای سازه در آن موجود بودند و جمله‌ای کل سازه از تکرار این سرول
واحد به دست آمد. این شکل ۱ سرول واحد و محورهای آن را نشان می‌دهد.
۲- تحلیل گشتاورها در سرول واحد
در اثر نیروهای برین بین پوسته و تقویت‌کننده، گشتاورهایی ایجاد می‌شود که مقدار آن برای استراحت در مصرف مصرف پوسته و رسوب مصرف مصرف پوسته و رسوب مصرف مصرف پوسته و رسوب
شکل ۲ رابطه ایجاد این تقویت‌کننده بر اثر نیروی خارجی این سازه دارد. این
که اثر اثر نیروهای برین بین پوسته را نشان می‌دهد، دارای اهمیت است.

\[
\begin{align*}
\epsilon_1 & = \frac{c_1}{s_1} = \frac{c_1^2}{s_1^2} = \frac{c_1^2 - s_1}{s_1^2} = \frac{c_1}{s_1} \\
\epsilon_{3} & = \frac{c_3}{s_3} = \frac{c_3^2}{s_3^2} = \frac{c_3^2 - s_3}{s_3^2} = \frac{c_3}{s_3}
\end{align*}
\]

که در آن \(s = \sin \phi \) و \(c = \cos \phi \) ارائه شده فرمول به محور استوانه ای است طبق فرض ۱ از اثرات گشتاورهای عرضی و برینی صرف‌نظر شده
ربا توجه به رابطه (2) که محورهای آن را نشان می‌دهد.

\[
\begin{align*}
F_1 & = A \epsilon_1 \epsilon_{13} = A \epsilon_1 (c_1^2 s_3^2 + s_1 s_3 - s_1 c_1 c_3 s_3) \\
F_2 & = A \epsilon_2 \epsilon_{13} = A \epsilon_2 (s_1 s_2 c_3 - c_1 s_2 s_3) \\
N_x & = A \epsilon_1 (2s_1 s_3 c_3 s_1^2 + s_1 s_3 s_1 s_3) \\
N_y & = A \epsilon_2 (2s_1 s_3 c_3 s_1^2 + s_1 s_3 s_1 s_3) \\
N_{xy} & = A \epsilon_2 (2s_1 s_3 c_3 s_1^2 + s_1 s_3 s_1 s_3)
\end{align*}
\]

۱- حمله گشتاورها به صورت تک جهت در راستای طولی، مدل برشی تقویت‌کننده به جمله‌ای کمتر از مدول طولی آن‌ها هست. همچنین سطح مقطع و تقویت‌کننده به فاصله با طول آن که بخش برون‌ای فرض شده
که تقویت‌کننده هر نقطه برای تحمیل می‌کند از نشان‌های برینی در
آن صرف‌نظر شده است.

۲- از بین بردی پیچان مقطع تقویت‌کننده حیز پرکن‌گزین صرف‌نظر کرد.
۳- کرنش در طول مقطع تقویت‌کننده بی‌بی‌کار است. از این جهت تنش
فرض شده به جای دوگاه خواهد بود.
۴- برای اثر از طریق نیروهای برینی بین تقویت‌کننده و پوسته منقل
می‌شود.
۵- مدل می‌باشد برای پایه تغییر شکل کلاسیک با ناهدی خواهد شد. این

شکل ۲ دیاگرام نیروهای وارد بر سرول واحد

\[
\begin{align*}
\theta_1 & = \theta_2 = \theta_3 \\
\phi_1 & = \phi_2 = \phi_3
\end{align*}
\]
3-2- ماتریس سنتی قویت‌کننده
منتهی‌های نیروی و کشش‌های که در روابط (5) و (7) بدست آمده طبق معادله:
\[
\begin{bmatrix}
M_{st} & \frac{F}{2}
\end{bmatrix} = \begin{bmatrix}
\frac{M_{st}}{2} & \frac{F}{2}
\end{bmatrix}
\]
بدین ترتیب می‌توان ماتریس سنتی قویت‌کننده را به صورت روابط (9) و (11) استخراج نمود:
\[
[A^m] = AE_n \begin{bmatrix}
\frac{c^2}{a} & \frac{c^2}{b} & 0 \\
\frac{s^2}{a} & \frac{s^2}{b} & 0 \\
0 & 0 & sc^2
\end{bmatrix}
\]
\[
[B^m] = AE_n \begin{bmatrix}
\frac{c^2}{a} & \frac{c^2}{b} & 0 \\
\frac{s^2}{a} & \frac{s^2}{b} & 0 \\
0 & 0 & 2sc^2
\end{bmatrix}
\]
\[
[D^m] = AE_n \begin{bmatrix}
\frac{c^2}{a} & \frac{c^2}{b} & 0 \\
\frac{s^2}{a} & \frac{s^2}{b} & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
هرچند این ماتریس‌ها در ظاهر متقابل نیستند، اما با توجه به رابطه هندسی
\[\sin \phi \cos \phi = \sin \phi \cos \phi\]
می‌توان نتایج آن را به تابع نمود.

4-2- سفی معادل کل سازه
پس از استفاده سنتی پاساژ قانون مخاطب‌های اولین بار در سال 2003 توسط یوژنی و دسیوس و همکارانش مطرح شده است [4] و بیش از آن مورد استدلال بیشتری از منظرات مختلف و دیدگاه‌های متفاوت بوده است. با استفاده از این روش سنتی پاساژ و قویت‌کننده مخاطب‌های مطلق رابطه (12) به نسبت کسری حجمی آن‌ها یک دیگر ترکیب شده و سفی نهایی سازه محاسبه می‌شود.
\[
|A| = V_{ba}[A]^m + V_{sh}[A]^s
\]
\[
|B| = V_{ba}[B]^m + V_{sh}[B]^s
\]
\[
|D| = V_{ba}[D]^m + V_{sh}[D]^s
\]
در این بخش وپسند به ترتیب کسر معیاری قویت‌کننده و
\[V_{sh} = 1 - V_{st} = 1 - V_{sh}\]
کیفیت بهترین مقاله‌های کارایی که در سال 2003 از اصل پیشنهاد برای مخاطب
ماتریس اصلی سنتی نهایی سازه استفاده کرده و رابطه (13) را ارائه نموده‌اند [3]
\[|A| = |A|^m + |A|^s\]
\[|B| = |B|^m + |B|^s\]
\[|D| = |D|^m + |D|^s\]
که این مقاله‌ها در سال 2003 از اصل پیشنهاد برای مخاطب
شارش و همکارانش [18] نیز از اصل پیشنهاد برای مخاطب سازه استفاده نموده‌اند.
برای تعریف آنها استفاده شده است. پس از جستجوی پوسته و تقویت کننده به استفاده از قبیل بیانیات این شرط با برقراری استاتسیو MPEC است. با این حال نتیجه یفتگه در خاک و میان جابجایی طبق رابطه (22) حذف شده است.

\[
\begin{align*}
\text{max} & \quad \sum_{m=1}^{M} \frac{1}{2} \int_{0}^{L} \left(\frac{d^2W}{dx^2} \right)^2 \, dx \\
\text{subject to} & \quad \text{در این رابطه و } R = mn/L.
\end{align*}
\]

شما را با توجه به مباحث هر یک در شرط ساختار هر یک می‌تواند به دو مشابه با داده از مقطع مربعی داده شده است. پس از پیچ‌کننده است. (23) قابل محااسبه است.

\[
\begin{align*}
\text{p} & = mL/n
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dt} \left[\frac{d}{dx} \left(\frac{1}{2} \frac{dW}{dx} \right) \right] = & \quad 0
\end{align*}
\]

\[
\begin{align*}
\text{وینه‌ی تحقیق کننده از یک رادیور برای تغییر کریستال‌سازی نیز می‌تواند با مشابهی به داده از مقطع مربعی داده شده است. پس از پیچ‌کننده است. (23) قابل محااسبه است.
\end{align*}
\]

\[
\begin{align*}
\text{p} & = mL/n
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dt} \left[\frac{d}{dx} \left(\frac{1}{2} \frac{dW}{dx} \right) \right] = & \quad 0
\end{align*}
\]

\[
\begin{align*}
\text{وینه‌ی تحقیق کننده از یک رادیور برای تغییر کریستال‌سازی نیز می‌تواند با مشابهی به داده از مقطع مربعی داده شده است. پس از پیچ‌کننده است. (23) قابل محااسبه است.
\end{align*}
\]
پوسته در شکل 10 نمایش داده شده است. با افزایش ضخامت پوسته، تنبل از ریسیدن به کانال موضعی تقوم شده‌است که باید با حرارت و وزن افزایش می‌یابد. اما برای ضخامت‌های بیشتر از 2 میلی‌متر که کانال به صورت موضعی در ریسیا رخ می‌دهد باید در جیهسیم ریز که باید به عبارت دیگر این محصولات از اثر افزایش وزن پوسته بیشتر از اثر افزایش پوسته بر حرارت ا тот است.

۵- مصالح سطح مقطع پوسته‌ها

هم‌گونه که در شکل ۲ روش‌های تحلیلی می‌تواند کانال موضعی پوسته و تقویت کننده‌ها در یک نظر بیکاری از این روی در آندازه‌گیری م材اً مانند کانال برای یک کانال و کانال و پوسته مشابه از روش مانند محدودیت

۵-۱ ضخامت پوسته

در ادامه اثر برخی پارامترهای هدفی از جمله سطح مقطع، اندازه و راه حل قرار گرفتن ریز و وزن ضخامت پوسته و بار حرارتی پوسته مشابه بررسی شده است. در اینجا که یکی از اصله‌های کامپوزیتی در این بودن سبب بر حرارت و وزن بهتر در مقایسه با سازه‌هایی از جنس‌های دیگر در این مقاله مطالب بر حرارتی وزن پوسته مشابه که از این به بعد نام "بار حرارتی وزن" از آن با فاکتور ضخامت مشابه به روش های پیشین نیز دقت بالاتر آن نسبت به قرار گرفت است.

۵-۱-۱ ضخامت پوسته

بررسی نمودن محدودیت‌های می‌گذارد پوسته با به‌کار گرفتن کم (کمتر از ۷۵ میلی‌متر) شکل کانال سازه به صورت کانال مشابه پوسته و بار افزایشی کانال (ضخامت‌های ۱/۷۵ میلی‌متر) می‌تواند کانال به کانال کلی در پوسته نیازی به برای افزایش مجهز ضخامت پوسته (ضخامت‌های کانال) از این به بعد در این مقاله همچنین در این مقاله دیگری بر حرارتی وزن پوسته مشابه که از این به بعد نام "بار حرارتی وزن" از آن با فاکتور ضخامت مشابه به روش های پیشین نیز دقت بالاتر آن نسبت به قرار گرفت است.

شکل ۸ موانع نتایج قانون معلومه‌ها برای بار حرارتی و وزن نشان داده است.

شکل ۸ موانع نتایج قانون معلومه‌ها برای بار حرارتی و وزن نشان داده است.
جدول 3: بر حسب وزن تپه مشک باتلاقی قرار گرفته در سطح 45 میلی‌مرن متوسط حذف آب‌کش‌ها در برابر کامپرسیون درجه‌بندی‌های مختلف

| درصد کامپرسیون (ک) | وزن تپه مشک (کیلوگرم) | جدول 4: بر حسب وزن تپه مشک باتلاقی قرار گرفته در سطح 6 میلی‌مرن متوسط حذف آب‌کش‌ها در برابر کامپرسیون درجه‌بندی‌های مختلف

<table>
<thead>
<tr>
<th>درصد کامپرسیون (ک)</th>
<th>وزن تپه مشک (کیلوگرام)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/84</td>
<td>13/78</td>
</tr>
<tr>
<td>96/72</td>
<td>23/27</td>
</tr>
<tr>
<td>423/40</td>
<td>38/66</td>
</tr>
<tr>
<td>16/74</td>
<td>57/59</td>
</tr>
<tr>
<td>3/91</td>
<td>81/63</td>
</tr>
<tr>
<td>2/73</td>
<td>111/64</td>
</tr>
<tr>
<td>6/65</td>
<td>147866</td>
</tr>
<tr>
<td>7/81</td>
<td>190/32</td>
</tr>
<tr>
<td>1/63</td>
<td>294/03</td>
</tr>
<tr>
<td>17/01</td>
<td>294/21</td>
</tr>
<tr>
<td>3/34</td>
<td>356/89</td>
</tr>
<tr>
<td>4/87</td>
<td>423/34</td>
</tr>
</tbody>
</table>

جدول 4: بر حسب وزن تپه مشک باتلاقی قرار گرفته در سطح 6 میلی‌مرن متوسط حذف آب‌کش‌ها در برابر کامپرسیون درجه‌بندی‌های مختلف

<table>
<thead>
<tr>
<th>درصد کامپرسیون (ک)</th>
<th>وزن تپه مشک (کیلوگرام)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/06</td>
<td>4/69</td>
</tr>
<tr>
<td>1/65</td>
<td>11/75</td>
</tr>
<tr>
<td>4/60</td>
<td>25/99</td>
</tr>
<tr>
<td>5/50</td>
<td>46/28</td>
</tr>
<tr>
<td>5/27</td>
<td>72/56</td>
</tr>
<tr>
<td>4/91</td>
<td>104/83</td>
</tr>
<tr>
<td>4/21</td>
<td>143/13</td>
</tr>
<tr>
<td>6/23</td>
<td>187/82</td>
</tr>
<tr>
<td>22/22</td>
<td>237/63</td>
</tr>
<tr>
<td>38/57</td>
<td>294/14</td>
</tr>
<tr>
<td>55/29</td>
<td>256/98</td>
</tr>
<tr>
<td>71/6</td>
<td>424/91</td>
</tr>
</tbody>
</table>
بررسی شکل 12-ب نشان می‌دهد که وجود یک سیلول واحد در راستای طول استوانه نیز ترتیب بحرانی از افزایش دهد و با افزایش پیش‌رفت، وجود حداکثر دو سیلول واحد در طول استوانه ضروری است به ارایه شکل 13 نشان می‌دهد که در افزایش بحرانی و وزه پیوسته‌های مشابه، در ادامه بحرانی و وزه بحرانی و وزه پیوسته مشابه به ترتیب نسبت به بحرانی و وزه بحرانی وزه پیوسته ساده بدون تغییر کننده بسیار کم است در این مطالعه شکل 13 نشان می‌دهد که در معرض 3 میلی‌متر در نظر گرفته شده است. شکل 12 اثر پارامترهای m و n بر بحرانی وزه پیوسته مشابه در محدوده کمک‌های افزایشی وزه و کمک‌های افزایشی در حالت مورد کمک‌های افزایشی می‌دهد اما در محدوده‌های کم کمک‌های افزایشی ریپ‌ها بر بحرانی افزایش می‌دهد. این مقاله و پژوهشی از نظر جفت ریپ‌ها نیز کاملاً برای کمک‌های افزایشی استفاده شود تا نتایج به این نتیجه که در مرجع [6] بحث ارائه شده است نیز مود همین متغیره‌ها است. از آنجا که افزایش تعداد ریپ‌ها سختی سازه را افزایش می‌دهد، به طور کلی افزایش تعداد جفت ریپ‌ها عموماً می‌تواند بر بحرانی افزایش می‌دهد. همان‌طور دیده نشان داد که افزایش تعداد جفت ریپ‌ها به افزایش سالم‌الحالات از سالم‌الحالات افزایش می‌دهد افزایش تعداد جفت ریپ‌ها به افزایش سالم‌الحالات افزایش می‌دهد
این صفحه از یک مقاله به زبان فارسی است که بر روی تصویر توضیحات و سیمپلیکس طراحی شده است. این مقاله توسط یک گروه از دانشمندان و پژوهشگران نوشته شده است که به بررسی تاثیرات مختلفی از جمله اکتشافات جدید در زمینه‌های مختلف می‌پردازند. توضیحات و نشانه‌ها به طور گسترده‌ای به صورت تابعی و عددی پرداخته می‌شوند. در این مقاله، توزیع و تاثیرات ناشی از اکتشافات جدید به اندازه‌گیری می‌شود و در رابطه با شرایط طبیعی و محیطی اجتماعی و اقتصادی، جمعی مورد بررسی قرار می‌گیرد.

سامپل تحقیقی شامل 100 نفر از جمعیت مطالعه بوده است. نتایج نشان داد که اکتشافات جدید تاثیر مثبتی بر تغییرات محیطی و اجتماعی داشته است. در این مقاله، نتایج به صورت تفصیلی و جامع در ادامه می‌باشد.

به عنوان نمونه، در این مقاله، تعدادی از اکتشافات جدید و آنالوگی‌های مربوط به آنها به دست آمده است. این اکتشافات شامل تغییرات در رفتار و رفتار جمعیتی، تغییرات در محیط جغرافیایی و اجتماعی، تغییرات در جمعیت و رفتار خاصیت‌های محیطی، و تغییرات در رفتار جمعیتی و جمعیتی مربوط به آنها می‌باشند.

تلاش برای تعیین تاثیرات اکتشافات جدید در محیط جغرافیایی و اجتماعی با اعداد و نشانه‌ها پرداخته می‌شود. با توجه به اینکه اکتشافات جدید به‌طور گسترده‌ای در جمعیت و مجامع به‌طور شبانه روزی دیده می‌شود، نتایج نشان داد که اکتشافات جدید می‌توانند تأثیرات آبراهی و تلافی‌های محیطی و اجتماعی را سنجیده‌اند.
به جنده قویت پوسته می‌تواند بازهٔ نا حداً ۸۰٪ زیاد دهد. اما هیچ‌کدام از حالات فراگیری ریب‌های نیز نواد به پهپاد چشمگیر در برابر ایجاد نمی‌آید و در اکثر حالات برابری ویژگی پوسته مشابه با آن برای تقویت پوسته ساده بدون قویت نیز کمتر است.

پهپایی که برای تقویت کننده‌ها فراگیری آنها در زاویه‌های بین ۳۰ و ۴۰ درجه نسبت به محور استوانه‌ای است، ضمن آنکه برای زاویه‌کمان‌های از ۳۰ درجه مود کمکی عموماً کمی و موضعی ریب خواهد بود.

7- مراجع

