Experimental and Numerical Analysis of Fracture on Flexible Roll Forming Process of Channel Section in Aluminum 6061-T6 Sheet

Yaghoub Dadgar Asl, Mohammad Morad Sheikhi*, Ali Pourkamali Anaraki, Valiollah Panahizadeh Rahimloo, Mohammad Hosseinpour Gollo

- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
* P.O.B. 16785-163 Tehran, Iran, m.sheikhi@srttu.edu

Abstract

Today, with the development of technology, industries such as automotive and construction require products with variable cross section. Multiplicity of steps, dimensional limitation and high production costs of the components are the reason flexible roll forming process is used to produce these products. One of the main defects in this process is the fracture phenomenon. The fracture is observed on the bending edges at transition zone where sheet thickness is large compared to the bending radius. In this research the fracture phenomenon is investigated on flexible roll forming process of channel section using ductile fracture criteria. For this purpose finite element simulation of the process using Abaqus software is done. The fracture defect in this process is investigated using six ductile fracture criteria by developing a subroutine. Experimental results are performed on 27 specimens precut sheets of AL6061-T6, using flexible roll forming machine built in Shahid Rajaee University. Numerical results were validated by comparing simulation results with experimental results, In addition, by comparing the results of ductile fracture criteria with experimental results, the Argon ductile fracture criteria, was selected. The fracture defect in this process is investigated using six ductile fracture criteria by developing a subroutine. Experimental results were performed on 27 specimens precut sheets of AL6061-T6, using flexible roll forming machine built in Shahid Rajaee University. Numerical results were validated by comparing simulation results with experimental results, In addition, by comparing the results of ductile fracture criteria with experimental results, the Argon ductile fracture criteria, was selected.
شکل 3 کاربرد سطوح مختلف در شکل‌های غلظت‌پذیر

گان پایین و همکاران (6) با روی آنتی‌افزایی محدوده جهانی برای تغییر شکل در شکل‌های غلظت‌پذیر، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی و عموماً به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (8) با روی آنتی‌افزایی شیب‌سازی اجزای محصول برای تغییر شکل در شکل‌های غلظت‌پذیر استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

گرگو و همکاران (9) با روی آنتی‌افزایی شکل‌های غلظت‌پذیر، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (11) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (12) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (13) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (14) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (15) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (16) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.

کمالی و همکاران (17) با روی آنتی‌افزایی شیب‌سازی اجزای محصول، سرعت و اندازه‌بندی فرآیند استفاده می‌کنند. هدف از این استفاده از شیب‌سازی اجزای محصول هوشمند، استفاده می‌کنند. به‌طور کلی، فرآیند به شکل‌های محدوده جهانی استفاده می‌شود.
شیب‌سازی نکته داد که دلیل تابعی که در فرآیند مولکولی از پودر عامل شکل‌دهی غلافی انعطاف در دامنه‌ی قطعه‌ای بین و نیرویی تابعی است که برابری یکی یا که تابعی که در فرآیند تابعی که در فرآیند نمایش داده می‌شود.

\[
D = \int_0^L f(\sigma) \, d\varepsilon_p
\]

(1) تعیین می‌شود.

1 - معیار کرنش پلاستیکی معادل
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 \right)}
\]

(2) ماده می‌شود.

2 - معیار رایس و نریسی
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(3) ماده می‌شود.

3 - معیار آرگون
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(4) ماده می‌شود.

4 - معیار فرودتال
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(5) ماده می‌شود.

5 - معیار هنکان
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(6) ماده می‌شود.

6 - معیار پایداری
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(7) ماده می‌شود.

7 - معیار نیازمند
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(8) ماده می‌شود.

8 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(9) ماده می‌شود.

9 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(10) ماده می‌شود.

10 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(11) ماده می‌شود.

11 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(12) ماده می‌شود.

12 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(13) ماده می‌شود.

13 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(14) ماده می‌شود.

14 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(15) ماده می‌شود.

15 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(16) ماده می‌شود.

16 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(17) ماده می‌شود.

17 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(18) ماده می‌شود.

18 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(19) ماده می‌شود.

19 - معیار نویسنده
\[
\varepsilon_p = \sqrt{\frac{1}{2} \left((\varepsilon_p^1)^2 + (\varepsilon_p^2)^2 + (\varepsilon_p^3)^2 \right)}
\]

(20) ماده می‌شود.
شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌هایی که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب بیان شده است.

شیپسایزی‌های تمدیدی اجسام که در ادامه آمده می‌باشد، این شیپسایزی‌ها به‌طور مناسب B
شکل 7 نمایی از ورق شیب‌بندی شده

شکل 8 نمایی از ورق ورق‌بندی شده

شکل 5 ا- مدل ورق پیش‌برده b- هندسه محصول نهایی

بر ورق مورد شده‌های ابزارهای شکل‌دهی هگام شکل‌دهی. به‌طور همزمان در حالت حرشی در جهت 1 و حرشی دوره‌ای حول محور 2 است حرشی طبقه‌بندی اصلی عمودی بر روی ورق‌های مولتی‌فیش است. در هر لحظه بر مبنای حرشی عمودی، شکل‌دهی پدید می‌آید. موضع‌های مختلف بر مبنای حرشی نشان داده شده است. در این مدل فاصله بین استاندارد 300 میلی‌متر است.

شکل‌دهی شکل‌بندی

شکل‌دهی شکل‌بندی صلب و ورق شیب‌بندی در حالت گرفته شده، به دلیل شیب‌سازی یک فراوری شکل‌دهی ورق، ورق از نوع آلومینیوم برای جریان شکل‌دهی. در بخش جریان شکل‌دهی، از نوع آلومینیوم یک ورق مورد استفاده قرار می‌گیرد. بخش‌های مختلف بطن این آلومینیوم همانند بطن نهایی هستند. بین 0.6 میلی‌متر برای ورق‌بندی شده، شکل‌دهی شکل‌بندی است. شکل‌دهی شکل‌بندی در شکل‌دهی نهایی 10 نشان داده شده است.

شکل‌دهی سایر جاها

بر ورق مورد شده‌های ابزارهای شکل‌دهی هگام شکل‌دهی. به‌طور همزمان در حالت حرشی در جهت 1 و حرشی دوره‌ای حول محور 2 است حرشی طبقه‌بندی اصلی عمودی بر روی ورق‌های مولتی‌فیش است. در هر لحظه بر مبنای حرشی عمودی، شکل‌دهی پدید می‌آید. موضع‌های مختلف بر مبنای حرشی نشان داده شده است. در این مدل فاصله بین استاندارد 300 میلی‌متر است.

شکل‌دهی نهایی

شکل‌دهی نهایی یک فراوری شکل‌دهی ورق، ورق از نوع آلومینیوم برای جریان شکل‌دهی. در بخش جریان شکل‌دهی، از نوع آلومینیوم یک ورق مورد استفاده قرار می‌گیرد. بخش‌های مختلف بطن این آلومینیوم همانند بطن نهایی هستند. بین 0.6 میلی‌متر برای ورق‌بندی شده، شکل‌دهی شکل‌بندی است. شکل‌دهی شکل‌بندی در شکل‌دهی نهایی 10 نشان داده شده است.

شکل‌دهی سایر جاها

بر ورق مورد شده‌های ابزارهای شکل‌دهی هگام شکل‌دهی. به‌طور همزمان در حالت حرشی در جهت 1 و حرشی دوره‌ای حول محور 2 است حرشی طبقه‌بندی اصلی عمودی بر روی ورق‌های مولتی‌فیش است. در هر لحظه بر مبنای حرشی عمودی، شکل‌دهی پدید می‌آید. موضع‌های مختلف بر مبنای حرشی نشان داده شده است. در این مدل فاصله بین استاندارد 300 میلی‌متر است.

شکل‌دهی نهایی

شکل‌دهی نهایی یک فراوری شکل‌دهی ورق، ورق از نوع آلومینیوم برای جریان شکل‌دهی. در بخش جریان شکل‌دهی، از نوع آلومینیوم یک ورق مورد استفاده قرار می‌گیرد. بخش‌های مختلف بطن این آلومینیوم همانند بطن نهایی هستند. بین 0.6 میلی‌متر برای ورق‌بندی شده، شکل‌دهی شکل‌بندی است. شکل‌دهی شکل‌بندی در شکل‌دهی نهایی 10 نشان داده شده است.

شکل‌دهی سایر جاها

بر ورق مورد شده‌های ابزارهای شکل‌دهی هگام شکل‌دهی. به‌طور همزمان در حالت حرشی در جهت 1 و حرشی دوره‌ای حول محور 2 است حرشی طبقه‌بندی اصلی عمودی بر روی ورق‌های مولتی‌فیش است. در هر لحظه بر مبنای حرشی عمودی، شکل‌دهی پدید می‌آید. موضع‌های مختلف بر مبنای حرشی نشان داده شده است. در این مدل فاصله بین استاندارد 300 میلی‌متر است.

شکل‌دهی نهایی

شکل‌دهی نهایی یک فراوری شکل‌دهی ورق، ورق از نوع آلومینیوم برای جریان شکل‌دهی. در بخش جریان شکل‌دهی، از نوع آلومینیوم یک ورق مورد استفاده قرار می‌گیرد. بخش‌های مختلف بطن این آلومینیوم همانند بطن نهایی هستند. بین 0.6 میلی‌متر برای ورق‌بندی شده، شکل‌دهی شکل‌بندی است. شکل‌دهی شکل‌بندی در شکل‌دهی نهایی 10 نشان داده شده است.
Table 2 Specifications of sheet thicknesses, Corners bending radius and bending angles in experimental tests

<table>
<thead>
<tr>
<th>Angle (deg)</th>
<th>Thickness (mm)</th>
<th>Radius (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>140</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>160</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 9 Flexible roll forming machine made in Shahid Rajaee University

Fig. 10 (a) Pre-cut sheet (b) Final product

Fig. 11 Compare of longitudinal strain on web and edge of narrow area in simulation with experimental reported data on [20] for the Bending angle of (a) 20° (b) 30°

Table 2 Specifications of sheet thicknesses, Corners bending radius and bending angles in experimental tests

(a) 20° (b) 30°
5- بررسی تجربی یده‌پایگی

بررسی آزمایش‌های انجام شده در جدول 2 در زایه‌های 25 و 45 درجه، از سیاله و پایه و پایه یا بارگی مشاهده شد که پایه دقیقاً در زایه‌های 60 درجه برای دو حالت، ضخامت خم 1.5 میم. در این حالت، در ارتفاع 307 میم. خم با ضخامت 4 میم. از این حالت محصول در راستای طولی و برای ضخامت 2 میم. با ضخامت 5 میم. از این حالت محصول در راستای طولی، در محل ناحیه انتخاب مشاهده شد که این محصول در ناحیه a - b نشان داده شده است.

3- مقایسه شیمی‌پیگی یا بارگی

آزمایش‌های تجربی و انطباع‌ریزی می‌باشد

برای شیم‌پیگی یا بارگی در فرآیندهای شکل‌دهی وری، آزمایش‌های شکست نم متعادل شده است. از این آزمایش‌های نم معادل‌خورد شکست نم مقدار بارگی شکست نم Dcrt برای همه آلیاژ‌های مورد استفاده از آن، معادله سندرم شکست نم و جدول 12 به راه‌اندازی شده است.

4- دقت محاسبه شکست نم با تماس محاسبه

جدول 4 انتخاب شکست نم برای ضخامت وری

<table>
<thead>
<tr>
<th>ضخامت وری (میم)</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش‌های نم</td>
<td>69.37</td>
<td>0.31</td>
<td>92.49</td>
<td>34.67</td>
</tr>
<tr>
<td>آزمایش‌های بارگی</td>
<td>0.19</td>
<td>182.56</td>
<td>0.31</td>
<td>69.37</td>
</tr>
</tbody>
</table>

جدول 5 مقادیر بارگی شکست نم با تماس محاسبه

<table>
<thead>
<tr>
<th>ضخامت وری (میم)</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>آزمایش‌های نم</td>
<td>69.37</td>
<td>0.31</td>
<td>92.49</td>
<td>34.67</td>
</tr>
<tr>
<td>آزمایش‌های بارگی</td>
<td>0.19</td>
<td>182.56</td>
<td>0.31</td>
<td>69.37</td>
</tr>
</tbody>
</table>
Fig. 15 Effect of bending radius on fracture for thicknesses (a) 1 mm (b) 1.5 mm (c) 2 mm

Fig. 14 Effect of sheet thickness on fracture for bending radiiues (a) 0.5 mm (b) 2.5 mm (c) 5 mm

Shap 15-14- a, b, c تأثیر ضخامت ورق بر پدیده پارکی

1.5 mm 1 mm

5 mm 2.5 mm 0.5 mm

مدال طبقه 14-15 در ضخامت های 2 mm 1.5 mm 0.5 mm با ناحیه خم 60 درجه با ناحیه خم 1 mm به عد Wood, شکست رخ می‌دهد.
بی‌دردوسی پاتریک یکی از مهم‌ترین عوامل فرایند صنعتی‌های شکل‌دهی ورق است. در این پژوهش بررسی بارهای پاتریک در فرایند شکل‌دهی فلزات و فیبری‌یافته بود. این مقاله شامل تفکیک کتابی بر اساس این تحقیقات شامل فرایند نرم برداشت شکست در نرم‌افزار اجرای محدود آگاهانه جامعه شد. انتخاب شیعه نتایج نهایی سه شش نمودار مورد بررسی قرار گرفت. نتایج نهایی سه شش نمودار مورد بررسی قرار گرفت. نتایج نهایی سه شش نمودار مورد بررسی قرار گرفت.

