Volume 19, Issue 7 (July 2019)                   Modares Mechanical Engineering 2019, 19(7): 1819-1825 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimzadegan A, Mohammadpour Fattahi A. Experimental Study of the Water Absorption and Fatigue Life of PMMA/MWCNTs Nanocomposites. Modares Mechanical Engineering 2019; 19 (7) :1819-1825
URL: http://mme.modares.ac.ir/article-15-22598-en.html
1- Mechanical Engineering Department, Engineering Faculty, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2- Mechanical Engineering Department, Engineering Faculty, Tabriz Branch, Islamic Azad University, Tabriz, Iran , a.fattahi@iaut.ac.ir
Abstract:   (3087 Views)
Carbon nanotubes have special importance due to unique properties as an amplifier phase. In this paper, the effect of multiwall carbon nanotubes on water absorption and fatigue life of poly methyl methacrylate is investigated. To this end, nanocomposites based on polymethyl methacrylate, containing 0-1.5 weight percentage of multiwall carbon nanotubes are produced with screw and injection molding process. The morphology was studied, using scanning electron microscopy. Microscopic images examination showed that carbon nanotubes have been well released in the field of polymer. The fatigue testing of each of the prototypes was carried out under identical conditions. Based on the results of fatigue test, nanocomposite fatigue strength containing 0.5% carbon nanotubes increased than base polymer. Also, based on the results of water absorption test, the existence of multiwall carbon nanotubes in polymer field decreased absorption water of the samples.
Full-Text [PDF 771 kb]   (2421 Downloads)    
Article Type: Case Report | Subject: Composites
Received: 2018/06/30 | Accepted: 2019/01/15 | Published: 2019/07/1

1. Fuad MYA, Hanim H, Zarina R, Mohd-Ishak ZA, Hassan A. Polypropylene/calcium carbonate nanocomposites-effects of processing techniques and maleated polypropylene compatibiliser. eXPRESS Polymer Letter. 2010;4(10):611-620. [Link] [DOI:10.3144/expresspolymlett.2010.76]
2. Sahebian S, Zebarjad SM, Sajjadi SA. The effect of temperature and nano-sized calcium carbonate on tensile properties of medium density polyethylene. Iranian Journal of Polymer Science and Technology. 2008;21(2):133-140. [Persian] [Link]
3. Bhattacharya SN, Gupta RK, Kamal MR. Polymeric nanocomposites, theory and practice. Munich: Carl Hanser Verlag; 2007. [Link] [DOI:10.3139/9783446418523]
4. Kong X, Chakravarthula SS, Qiao Y. Evolution of collective damage in a polyamide 6-silicate nanocomposite. International Journal of Solids and Structures. 2006;43(20):5969-5980. [Link] [DOI:10.1016/j.ijsolstr.2005.07.019]
5. Banks-Sills L, Guy Shiber D, Fourman V, Eliasi R, Shlayer A. Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Composites Part B: Engineering. 2016;95:335-345. [Link] [DOI:10.1016/j.compositesb.2016.04.015]
6. Alizadeh N, Safi M, Yousefi AA. PMMA/CB and PMMA/MWCNTs nanocomposites: Assessments through optical behavior. Iranian Journal of Polymer Science and Technology. 2012;25(4):255-263. [Persian] [Link]
7. Mahmoodi M, Arjmand M, Sundararaj U, Park S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon. 2012;50(4):1455-1464. [Link] [DOI:10.1016/j.carbon.2011.11.004]
8. Wang JY, Zhang JY, Shi XH. Experiment research of environment effect on mechanical properties of PMMA. Applied Mechanics and Materials. 2013;387:208-211. [Link] [DOI:10.4028/www.scientific.net/AMM.387.208]
9. Ormsby R, McNally T, O'Hare P, Burke G, Mitchell C, Dunne N. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomaterialia. 2012;8(3):1201-1212. [Link] [DOI:10.1016/j.actbio.2011.10.010]
10. Lin Y, Xu YZ. Incorporation of MWCNTs to PMMA bone cements: Effects on fatigue properties. Advanced Materials Research. 2014;971-973:1013-1016. [Link] [DOI:10.4028/www.scientific.net/AMR.971-973.1013]
11. Huang A, Yao W, Chen F. Analysis of fatigue life of PMMA at Different frequencies based on a new damage mechanics model. Mathematical Problems in Engineering. 2014;2014:352676. [Link] [DOI:10.1155/2014/352676]
12. Navidfar A, Azdast T, Karimzad Ghavidel A. Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. Journal of Applied Polymer Science. 2016;133(31):43738-43747. [Link] [DOI:10.1002/app.43738]
13. Fattahi AM, Najipour A. Experimental study on mechanical properties of PE/CNT Composites. Journal of Theoretical and Applied Mechanics. 2017;55(2):719-726. [Link] [DOI:10.15632/jtam-pl.55.2.719]
14. Liu W, Yao X, Ma Y, Chen X, Guo G, Ma L. Prediction on fatigue life of U-notched PMMA plate. Fatigue & Fracture of Engineering Materials & Structures. 2016;40(2):300-312. [Link] [DOI:10.1111/ffe.12507]
15. Mohd-Ishak ZA, Kusmono K, Chow WS, Takeichi T, Rochmadi R. Effect of organoclay modification on the mechanical, morphology, and thermal propertiese of injection molded polyamide6/polypropylene/montmorillonite nanocomposites. PPS-24: the Polymer Processing Society 24th Annual Meeting; June 15-19, 2008, Salerno, Italy. Melville: Polymer Processing Society; 2008. [Link]
16. Abar F, Abadyan M, Aghazade J. Effects of surface quality and loading history on fatigue life of laser-machined poly(methyl methacrylate). Materials and Design. 2015;65:473-481. [Link] [DOI:10.1016/j.matdes.2014.09.011]
17. Wang JY, Zhang JY, Shi XH. Study of fatigue properties of PMMA with typical damage. Applied Mechanics and Materials. 2013;387:212-215. [Link] [DOI:10.4028/www.scientific.net/AMM.387.212]
18. Zhang M, Wang X, Fu X, Xia Y. Performance and anti-wear mechanism of CaCO3 nanoparticles as green additive in poly-alpha-olefin. Tribology International. 2009;42(7):1029-1039. [Link] [DOI:10.1016/j.triboint.2009.02.012]
19. N'Diaye M, Pascaretti-Grizon F, Massin P, Baslé MF, Chappard D. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir. 2012;28(31):11609-11614. [Link] [DOI:10.1021/la302260a]
20. Li MC, Ge X, Cho UR. Mechanical performance, water absorption behavior and biodegradabilit of poly(methyl methacrylate)-modified starch/SBR biocomposites. Macromolecular Research. 2013;21(7):793-800. [Link] [DOI:10.1007/s13233-013-1088-4]
21. Nozad Bonab A, Mohsenzadeh R, Sayyed Noorani MR. Experimental study on the water absorption and tribological properties of PA6/CaCO3 Nanocomposites. Modares Mechanical Engineering. 2015;15(5):108-114. [Persian] [Link]
22. Unemori M, Matsuya Y, Matsuya S, Akashi A, Akamine A. Water absorption of poly(methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride. Biomaterials. 2003;24(8):1381-1387. [Link] [DOI:10.1016/S0142-9612(02)00521-5]
23. Heintze SD, Monreal D, Rousson V. Fatigue resistance of denture teeth. Journal of the Mechanical Behavior of Biomedical Materials. 2016;53:373-383. [Link] [DOI:10.1016/j.jmbbm.2015.08.034]
24. Dowling NE. Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigue. 4th Edition. New Jersey: Pearson Prentice Hall; 2013. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.