1. Paone N, Riethmuller ML, Vandenbraembussche RA. Application of particle image displacement velocimetry to a centrifugal pump. Unknown City: Unknown Publisher; 1998. [
Link]
2. Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry. Journal of Fluids Engineering. 1994;116(3):538-544. [
Link] [
DOI:10.1115/1.2910310]
3. Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-I: On flow structures and turbulence. Journal of Fluids Engineering. 2000;122(1):97-107. [
Link] [
DOI:10.1115/1.483231]
4. Sinha M, Katz J, Meneveau Ch. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-II: Addressing passage-averaged and large-eddy simulation modeling issues in turbomachinery flows. Journal of Fluids Engineering. 2000;122(1):108-116.
https://doi.org/10.1115/1.483232 [
Link] [
DOI:10.1115/1.483231]
5. Soranna F, Chow YC, Uzol O, Katz J. The effect of inlet guide vanes wake impingement on the flow structure and turbulence around a rotor blade. Journal of Turbomachinery. 2006;128(1):82-95. [
Link] [
DOI:10.1115/1.2098755]
6. Bricaud C, Richter B, Dullenkopf K, Bauer HJ. Stereo PIV measurements in an enclosed rotor-stator system with pre-swirled cooling air. Experiments in Fluids. 2005;39(2):202-212. [
Link] [
DOI:10.1007/s00348-005-1021-5]
7. Liu B, Yu X, Liu H, Jiang H, Yuan H, Xu Y. Application of SPIV in turbomachinery. Experiments in Fluids. 2006;40(4):621-642. [
Link] [
DOI:10.1007/s00348-005-0102-9]
8. Denger GR, McBride MW. Three-dimensional flow field characteristics measured in a forward-curved centrifugal blower using particle tracing velocimetry (PTV). American Society of Mechanical Engineers Fluids Engineering Division. 1990;95:49-56. [
Link]
9. Cho GR, Kawahashi M, Hirahara H, Kitadume M. Application of stereoscopic particle image velocimetry to experimental analysis of flow through multiblade fan. JSME International Journal Series B Fluids and Thermal Engineering. 2005;48(1):25-33. [
Link] [
DOI:10.1299/jsmeb.48.25]
10. Akbarizade M, Montazerin N, Damangir E, Basirat Tabrizi H. Measurement of the flow field after the Squirrel Nest fan rotors using PIV in a fixed period phase. 11th Conference of Fluid Dynamics, 27-29 May, 2008, Tehran, Iran. Tehran: Khajeh Nasir Toosi University of Technology; 2008. [Persian] [
Link]
11. Akbari G. Measurement of the turbulent field in a turbulent centrifugal turbine with SPIV method [Dissertation]. Tehran: Amirkabir University of Technology; 2013. [
Link]
12. Goguen JA. LA Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338-353. LA Zadeh. Similarity relations and fuzzy orderings. Information sciences, Vol. 3 (1971), pp. 177-200. The Journal of Symbolic Logic. 1973;38(4):656-657. [
Link] [
DOI:10.2307/2272014]
13. Panigrahi PK, Dwivedi M, Khandelwal V, Sen M. Prediction of turbulence statistics behind a square cylinder using neural networks and fuzzy logic. Journal of Fluids Engineering. 2003;125(2):385-387. [
Link] [
DOI:10.1115/1.1537251]
14. Tseng YH, Durbin P, Tzeng GH. Using a fuzzy piecewise regression analysis to predict the nonlinear time-series of turbulent flows with automatic change-point detection. Flow Turbulence and Combustion. 2001;67(2):81-106. [
Link] [
DOI:10.1023/A:1014077330409]
15. Liang Z, Shan Sh, Liu X, Wen Y. Fuzzy prediction of AWJ turbulence characteristics by using typical multi-phase flow models. Engineering Applications of Computational Fluid Mechanics. 2017;11(1):225-257. [
Link] [
DOI:10.1080/19942060.2016.1277556]
16. Vernet A, Kopp GA. Classification of turbulent flow patterns with fuzzy clustering. Engineering Applications of Artificial Intelligence. 2002;15(3-4):315-326. [
Link] [
DOI:10.1016/S0952-1976(02)00037-4]
17. Ruspini EH. A new approach to clustering. Information and Control. 1969;15(1):22-32. [
Link] [
DOI:10.1016/S0019-9958(69)90591-9]
18. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences. 1984;10(2-3):191-203. [
Link] [
DOI:10.1016/0098-3004(84)90020-7]
19. Pourmohammadi S, Maleki A. An automatic approach to continuous stress assessment during driving based on fuzzy c-means clustering. The Modares Journal of Electrical Engineering. 2013;13(1):9-17. [
Link]
20. Ghosh S, Mitra S, Dattagupta R. Fuzzy clustering with biological knowledge for gene selection. Applied Soft Computing. 2014;16:102-111. [
Link] [
DOI:10.1016/j.asoc.2013.11.007]
21. Alesheikh AA, Aslani M, Kalantari SM. Extracting optimal fuzzy knowledge base for integration weighting and integrating spatial information of the geospatial information systems. The Journal of Spatial Planning. 2013;17(1):21-42. [Persian] [
Link]
22. Eslamloueyan R. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process. Applied Soft Computing. 2011;11(1):1407-1415. [
Link] [
DOI:10.1016/j.asoc.2010.04.012]
23. Zhao F, Liu H, Fan J. A multiobjective spatial fuzzy clustering algorithm for image segmentation. Applied Soft Computing. 2015;30:48-57. [
Link] [
DOI:10.1016/j.asoc.2015.01.039]
24. Sowmya B, Sheela Rani B. Colour image segmentation using fuzzy clustering techniques and competitive neural network. Applied Soft Computing. 2011;11(3):3170-3178. [
Link] [
DOI:10.1016/j.asoc.2010.12.019]
25. Yang Z, Chung FL, Shitong W. Robust fuzzy clustering-based image segmentation. Applied Soft Computing. 2009;9(1):80-84. [
Link] [
DOI:10.1016/j.asoc.2008.03.009]
26. Ghorbanpour A, tallai G, panahi M. Clustering customers of Refah Bank branches using combination of genetic algorithm and c-means in fuzzy environment. Organizational Resources Management Researchs. 2015;5(3):153-168. [Persian] [
Link]
27. Askari S, Montazerin N. A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering. Expert Systems with Applications. 2015;42(4):2121-2135. [
Link] [
DOI:10.1016/j.eswa.2014.09.036]
28. Askari S, Montazerin N, Fazel Zarandi MH. A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables. Applied Soft Computing. 2015;35:151-160. [
Link] [
DOI:10.1016/j.asoc.2015.06.028]
29. Duru O, Bulut E. A non-linear clustering method for fuzzy time series: Histogram damping partition under the optimized cluster paradox. Applied Soft Computing. 2014;24:742-748. [
Link] [
DOI:10.1016/j.asoc.2014.08.038]
30. Raj D, Swim WB. Measurements of the mean flow velocity and velocity fluctuations at the exit of an FC centrifugal fan rotor. Journal of Engineering for Power. 1981;103(2):393-399. [
Link] [
DOI:10.1115/1.3230733]
31. Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J. Particle image velocimetry: A practical guide. 3rd Edition. Cham: Springer International Publishing; 2018. [
Link] [
DOI:10.1007/978-3-319-68852-7]
32. Tropea C. Laser Doppler anemometry: Recent developments and future challenges. Measurement Science and Technology. 1995;6(6):605-619. [
Link] [
DOI:10.1088/0957-0233/6/6/001]
33. Groll L, Jakel J. A new convergence proof of fuzzy c-means. IEEE Transactions on Fuzzy Systems. 2005;13(5):717-720. [
Link] [
DOI:10.1109/TFUZZ.2005.856560]
34. Koorehpazan Dezfuli A. Principles of fuzzy set theory and its applications in the modeling of water engineering problems. 2nd Edition. Tehran: Amir Kabir Jahad Daneshgani Department of Education; 2008. [Persian] [
Link]
35. Fukuyama Y. A new method of choosing the number of clusters for the fuzzy c-mean method. In: Proceeding of 5th Fuzzy System Symposium. Unknown City: Unknown Publisher; 1989. pp. 247-250. [
Link]
36. Xie XL, Beni G. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991;13(8):841-847. [
Link] [
DOI:10.1109/34.85677]
37. Kwon SH. Cluster validity index for fuzzy clustering. Electronics Letters. 1998;34(22):2176-2177. [
Link] [
DOI:10.1049/el:19981523]
38. Askari S, Montazerin N, Fazeli Zarandi MH. Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data. Applied Soft Computing. 2017;53:262-283. [
Link] [
DOI:10.1016/j.asoc.2016.12.049]