Volume 19, Issue 5 (May 2019)                   Modares Mechanical Engineering 2019, 19(5): 1187-1197 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari S, Bakhshan Y, Khorshidi Mal Ahmadi J, Afsari A. Investigating the Behavior of Aluminum 7075 under the Process of CGP as the Fin of Space Structures. Modares Mechanical Engineering 2019; 19 (5) :1187-1197
URL: http://mme.modares.ac.ir/article-15-24616-en.html
1- Department of Mechanic, Hormozgan University, Bandar Abbas, Iran
2- Department of Mechanic, Shiraz Branch, Islamic Azad University, Shiraz, Iran , afsari@iaushiraz.ac.ir
Abstract:   (4523 Views)

One of the new approaches to produce nanoscale metals with ultera fine grains is applying severe plastic deformation on initial sample with coarse grains. In this method, by applying intense strain to the sample in several steps, the size of the grain decreases to a nanoscale, which results in the improvement of the mechanical and physical properties of the metals. One of the most important methods for this purpose is the constrained groove pressing (CGP) method. Due to the need for a small weight of space structures, sheets of aluminum alloys, aluminum7075-T6, and steel 4130 were selected. The mechanical behavior of the sheets was studied experimentally. The simulation of the interaction between the fluid and the structure was performed for a curved fin model with three different alloys and the deformation of the flying rocket was compared. The results show that the size of the aluminum7075-T6 block decreases from 60 microns to 270 nm with increasing the stages of the process, while the yield strength in the fourth pass increases compared to the annealed sample by 38%. The tensile strength increased by 34%, and the length elongation in the fourth passes reduced by 40%. The total deformation in the fin of the aluminum 7075-T6 improved to 99.9% with the CGP process. However, the amount of deformation in the steel 4130 fin compared to the CGPed aluminum7075-T6 is less than 0.1% of the total deformation.

Full-Text [PDF 1611 kb]   (3010 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2018/08/31 | Accepted: 2018/12/3 | Published: 2019/05/1

1. Gülay E, Akgül A, Isaković J, Mandić S. Computational fluid dynamics and experimental investigation of wrap-around-fins missile rolling moment. Scientific Technical Review. 2011;61(3-4):8-15. [Link]
2. Shima T, Idan M, Golan OM. Sliding-mode control for integrated missile autopilot guidance. Journal of guidance, control, and dynamics. 2006;29(2):250-260. [Link] [DOI:10.2514/1.14951]
3. Omer T, Gokmen M. Magnus effects on stability of wraparound-finned missiles. Journal of Spacecraft and Rockets. 1998;35(4):467-472. [Link] [DOI:10.2514/2.3377]
4. Soltani MR, Fazeli H, Farahanieh B, Davari AR. An experimental study of the aerodynamic behavior of the two wrap around fin missiles. Journal of Computational Methods in Engineering. 2002;21(1):141-152. [Persian] [Link]
5. Ross CT. A conceptual design of an underwater missile launcher. Ocean Engineering. 2005;32(1):85-99. [Link] [DOI:10.1016/j.oceaneng.2004.04.008]
6. Naizabekov AB, Andreyachshenko VA, Kocich R. Study of deformation behavior, structure and mechanical properties of the AlSiMnFe alloy during ECAP-PBP. Micron. 2013;44:210-217. [Link] [DOI:10.1016/j.micron.2012.06.011]
7. Yang J, Chang L, Jiang L, Wang K, Huang L, He Z, et al. Electrodeposition of Al-Mn-Zr ternary alloy films from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid and their corrosion properties. Surface and Coatings Technology. 2017;321:45-51. [Link] [DOI:10.1016/j.surfcoat.2017.04.061]
8. Irizalp SG, Saklakoglu N. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing. Optics and Lasers in Engineering. 2016;77:183-190. [Link] [DOI:10.1016/j.optlaseng.2015.08.004]
9. Dehghan M, Qods F, Gerdooei M. Investigation of microstructure and anisotropy of mechanical properties of the ARB-processed commercial purity Aluminium with interpassing heat treatment. Modares Mechanical Engineering. 2013;13(2):123-132. [Persian] [Link]
10. Sieber H, Wilde G, Perepezko JH. Thermally activated amorphous phase formation in cold-rolled multilayers of Al-Ni, Al-Ta, Al-Fe and Zr-Cu. Journal of Non-Crystalline Solids. 1999;250-252(Part 2):611-615. [Link] [DOI:10.1016/S0022-3093(99)00142-8]
11. Shin DH, Park JJ, Kim YS, Park KT. Constrained groove pressing and its application to grain refinement of Aluminum. Materials Science and Engineering A. 2002;328(1-2):98-103. [Link] [DOI:10.1016/S0921-5093(01)01665-3]
12. Jandaghi MR, Pouraliakbar H. Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed aluminum-manganese-silicon alloy. Materials Science and Engineering A. 2017;679:493-503. [Link] [DOI:10.1016/j.msea.2016.10.054]
13. Borhani M, Djavanroodi F. Rubber pad-constrained groove pressing process: Experimental and finite element investigation. Materials Science and Engineering A. 2012;546:1-7. [Link] [DOI:10.1016/j.msea.2012.02.089]
14. Sajadi A, Ebrahimi M, Djavanroodi F. Experimental and numerical investigation of Al properties fabricated by CGP process. Materials Science and Engineering A. 2012;552:97-103. [Link] [DOI:10.1016/j.msea.2012.04.121]
15. Peng K, Su L, Shaw LL, Qian KW. Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys. Scripta Materialia. 2007;56(11):987-990. [Link] [DOI:10.1016/j.scriptamat.2007.01.043]
16. Peng K, Zhang Y, Shaw LL, Qian KW. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing. Acta Materialia. 2009;57(18):5543-5553. [Link] [DOI:10.1016/j.actamat.2009.07.049]
17. Rahimi F, Mohammad Sadeghi B, Ahmadi M. A comparative study between deformation behavior of pure Aluminum in CGP and RCS by finite element analysis. Metallurgical Engineering. 2014;17(53):25-32. [Persian] [Link]
18. Wang ZS, Guan YJ, Wang GC, Zhong CK. Influences of die structure on constrained groove pressing of commercially pure Ni sheets. Journal of Materials Processing Technology. 2015;215:205-218. [Link] [DOI:10.1016/j.jmatprotec.2014.08.018]
19. ASM International. Metals handbook: Properties and selection. 10th Edition.. Russell Township: ASM International; 1990. [Link]
20. Park JK, Ardell AJ. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical Transactions A. 1983;14(10):1957-1965. [Link] [DOI:10.1007/BF02662363]
21. ASTM International. ASTM B210-12, standard specification for aluminum and aluminum-alloy drawn seamless tubes [Internet]. West Conshohocken: ASTM International; 2014 [cited 01 Aug 2018]. Available from: https://www.astm.org/Standards/B210.htm [Link]
22. Chandler H. Heat treater's guide: Practices and procedures for irons and steels. 2nd Edition. Russell Township: ASM International; 1995. [Link]
23. ASTM. Designation: B918-01, standard practice for heat treatment of wrought aluminum alloys. In: American society for testing and materials. The annual book of ASTM standards. West Conshohocken: ASTM International; 2003. [Link]
24. Quan GZ, Li GS, Wang Y, Lv WQ, Yu CT, Zhou J. A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters. Materials Research. 2013;16(1):19-27. [Link] [DOI:10.1590/S1516-14392012005000156]
25. ASTM International. ASTM E8/E8M-16a, standard test methods for tension testing of metallic materials [Internet]. West Conshohocken: ASTM International; 2016 [cited 01 Aug 2018]. Available from: https://www.astm.org/Standards/E8 [Link]
26. ASTM International. ASTM E384-99, standard test method for microindentation hardness of materials [Internet]. West Conshohocken: ASTM International; 1999 [cited 01 Aug 2018]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E384-99.htm [Link]
27. Kim JY, Cho SI, Lee I, Na HJ, Jung SY. Aerodynamic analysis of a rolling wraparound fin projectile in supersonic flow. International Journal of Modern Physics Conference Series. 2012;19:276-282. [Link] [DOI:10.1142/S2010194512008860]
28. Gritskevich MS, Garbaruk AV, Schütze J, Menter FR. Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion. 2012;88(3):431-449. [Link] [DOI:10.1007/s10494-011-9378-4]
29. Isaev SA, Baranov PA, Kudryavtsev NA, Lysenko DA, Usachev AE. Comparative analysis of the calculation data on an unsteady flow around a circular cylinder obtained using the VP2/3 and fluent packages and the Spalart-Allmaras and Menter turbulence models. Journal of Engineering Physics and Thermophysics. 2005;78(6):1199-1213. [Link] [DOI:10.1007/s10891-006-0054-9]
30. Liu Y, Lu L, Fang L, Gao F. Modification of Spalart–Allmaras model with consideration of turbulence energy backscatter using velocity helicity. Physics Letters A. 2011;375(24):2377-2381. [Link] [DOI:10.1016/j.physleta.2011.05.023]
31. Heyland M, Trepczynski A, Duda GN, Zehn M, Schaser KD, Märdian S. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load. Medical Engineering and Physics. 2015;37(12):1180-1185. [Link] [DOI:10.1016/j.medengphy.2015.10.002]
32. Dongyang Ch, Abbas LK, Xiaoting R, Guoping W. Aerodynamic and static aeroelastic computations of a slender rocket with all-movable canard surface. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2018;232(6):1103-1119. [Link] [DOI:10.1177/0954410017705901]
33. Chen Z, Sun Q. Applications of inertia relief method in aircraft static aero-elasticity. Flight Dynamics. 2008;5:71-74. [Chinese] [Link]
34. Dahlke CW, Craft JC. The effect of wrap-around fins on aerodynamic stability and rolling moment variations (No. RD-73-17). Alabama: Army Missile Research Development And Engineering Lab Redstone Arsenal Al Aeroballistics Directorate; 1973. [Link] [DOI:10.21236/AD0767258]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.