1. Ge Q, Ma J, Chen Sh, Wang Y, Bai L. Observable degree analysis to match estimation performance for wireless tracking networks. Asian Journal of Control. 2017;19(4):1259-1270. [
Link] [
DOI:10.1002/asjc.1386]
2. Dhingra NK, Jovanović MR, Luo ZQ. An ADMM algorithm for optimal sensor and actuator selection. 53rd IEEE Conference on Decision and Control, 15-17 Dec 2014, Los Angeles CA, USA. Piscataway: IEEE; 2014. [
Link] [
DOI:10.1109/CDC.2014.7040017]
3. Argha AR, Su SW, Savkin A, Celler B. A framework for optimal actuator/sensor selection in a control system. International Journal of Control. 2019;92(2):242-260. [
Link] [
DOI:10.1080/00207179.2017.1350755]
4. Healey M, Mackinnon DJ. A quantitative measure of observability for a linear system. International Journal of Control. 1975;22(3):421-426. [
Link] [
DOI:10.1080/00207177508922094]
5. Hamdan AMA, Nayfeh AH. Measures of modal controllability and observability for first- and second-order linear systems. Journal of Guidance Control and Dynamics. 1989;12(3):421-428. [
Link] [
DOI:10.2514/3.20424]
6. Müller PC, Weber HI. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica. 1972;8(3):237-246. [
Link] [
DOI:10.1016/0005-1098(72)90044-1]
7. Damak T, Babary JP, Nihtilä MT. Observer design and sensor location in distributed parameter bioreactors. Dynamics and Control of Chemical Reactors Distillation Columns and Batch Processes. 1993;87-92. [
Link] [
DOI:10.1016/B978-0-08-041711-0.50015-5]
8. Dochain D, Tali-Maamar N, Babary JP. On modelling, monitoring and control of fixed bed bioreactors. Computers & Chemical Engineering. 1997;21(11):1255-1266. [
Link] [
DOI:10.1016/S0098-1354(96)00370-5]
9. Waldraff W, Dochain D, Bourrel S, Magnus A. On the use of observability measures for sensor location in tubular reactor. Journal of Process Control. 1998;8(5-6):497-505. [
Link] [
DOI:10.1016/S0959-1524(98)00017-1]
10. Van Den Berg FWJ, Hoefsloot HCJ, Boelens HFM, Smilde AK. Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria. Chemical Engineering Science. 2000;55(4):827-837. [
Link] [
DOI:10.1016/S0009-2509(99)00360-7]
11. Ham FM, Grover Brown R. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems. 1983;AES-19(2):269-273. [
Link] [
DOI:10.1109/TAES.1983.309446]
12. Cheng XH, Wan DJ, Zhong X. Study on observability and its degree of strapdown inertial navigation system. Journal of Southeast University. 1997;(6):6-11. [
Link]
13. Dong JL, Mo B. The method of system observability analysis using pseudo-inverse of system observability matrix. Proceedings of the 32nd Chinese Control Conference, 26-28 July 2013, Xi'an, China. Piscataway: IEEE; 2013. [
Link]
14. Chen Y, Zhao Y, Li QS. Observable degree analysis method and its application in transfer alignment. Journal of Chinese Inertial Technology. 2013;(4):467-471. [
Link]
15. Zhuo P, Ge Q, Shao T, Wang Y, Bai L. Observable degree analysis using unscented information filter for nonlinear estimation systems. 10th International Conference on Information, Communications and Signal Processing (ICICS), 2-4 Dec 2015, Singapore, Singapore. Piscataway: IEEE; 2015. [
Link] [
DOI:10.1109/ICICS.2015.7459932]
16. Lystianingrum V, Hredzak B, Agelidis VG, Djanali VS. Observability degree criteria evaluation for temperature observability in a battery string towards optimal thermal sensors placement. IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 21-24 April 2014, Singapore, Singapore. Piscataway: IEEE; 2014. [
Link] [
DOI:10.1109/ISSNIP.2014.6827641]
17. Ma J, Ge Q, Wang Y, Bai L. Comparison on system observable degree analysis methods for target tracking. IEEE International Conference on Information and Automation, 8-10 Aug 2015, Lijiang, China. Piscataway: IEEE; 2015. [
Link] [
DOI:10.1109/ICInfA.2015.7279439]
18. Eising R. The distance between a system and the set of uncontrollable systems. In: Fuhrmann PA, editor. Mathematical theory of networks and systems, lecture notes in control and information sciences. 58th Volume. Berlin/Heidelberg: Springer; 1984. pp. 303-314. [
Link] [
DOI:10.1007/BFb0031061]
19. Van De Wal M, De Jager B. Selection of sensors and actuators for an active suspension control problem. Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Control, 15 Sept-18 Nov 1996, Dearborn, MI, USA. Piscataway: IEEE; 1996. [
Link]
20. Sarshari E, Khaki Sedigh A. Selection of sensors for hydro-active suspension system of passenger car with input-output pairing considerations. Journal of Dynamic Systems Measurement and Control. 2013;135(1):011004. [
Link] [
DOI:10.1115/1.4006625]
21. Malekshahi A, Mirzaei M, Aghasizade S. Non-linear predictive control of multi-input multi-output vehicle suspension system. Journal of Low Frequency Noise Vibration and Active Control. 2015;34(1):87-105. [
Link] [
DOI:10.1260/0263-0923.34.1.87]
22. Malekshahi A, Mirzaei M. Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process. International Journal of Automotive Technology. 2012;13(2):263-271. [
Link] [
DOI:10.1007/s12239-012-0023-6]