کنترل ارتعاشات دو روتور جفک‌دانه‌ای توسعه جاذب مغناطیسی

حمید رضا حیدری ۱، بهناج منجزی ۲

۱- استادیار، مهندسی مکانیک، دانشگاه مالزی، مالزی
۲- دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه مالزی، مالزی
hr.heidari@malayeru.ac.ir . 65719-61446, Malayer, Iran

کلمات کلیدی:
کنترل ارتعاشات دو روتور جفک‌دانه‌ای توسعه جاذب مغناطیسی

مثابع کلی ارتعاشات در سیستم‌های روتو-دیynamیک در حالتی که جفک‌دانه‌ای ساختار ساختمانی ساختار با ویژگی‌های حرکتی به سیستم روتور می‌باشد، روش‌های ارتعاشات روتور در سیستم به‌کار رفته، استفاده از سیستم‌های مغناطیسی می‌باشد که به استفاده از سیستم‌های انرژی مغناطیسی محسوس شده‌است. مکانیکی و کرده، ارتعاشات روتور در صفحه به‌کار رفته، استفاده از جاذب‌های مغناطیسی بکثر از جاذب‌های مغناطیسی با انرژی، ارتعاشات روتور در صفحه به‌کار رفته، استفاده از جاذب‌های مغناطیسی با انرژی نیروی جاذب‌های مغناطیسی به‌کار رفته، استفاده از سیستم‌های انرژی مغناطیسی با انرژی نیروی جاذب‌های مغناطیسی به‌کار رفته، استفاده از سیستم‌های انرژی مغناطیسی خاص جاذب‌های مغناطیسی برای استفاده در سیستم روتور در صفحه به‌کار رفته، استفاده از جاذب‌های مغناطیسی با انرژی نیروی جاذب‌های مغناطیسی به‌کار رفته، استفاده از سیستم‌های انرژی مغناطیسی خاص جاذب‌های مغناطیسی برای استفاده

Control vibration of imbalance Jeffcott rotor by magnetic absorber

Hamid Reza Heidari¹, Behnam Monjezi

Department of Mechanical Engineering, Malayer University, Malayer, Iran
¹P.O.B. 65719-61446, Malayer, Iran, hr.heidari@malayeru.ac.ir

ARTICLE information

Original Research Paper
Received 01 July 2016
Accepted 04 August 2016
Available Online 28 August 2016

Abstract

Unbalance mass and imperfect bearings are the main sources of vibration in rotor dynamic systems. One way to decrease and control a rotor vibration is the use of magnetic absorbers. The magnetic absorber is used to control the position of the rotor and reduce its vibration. In this study, by applying the dynamic absorber system force and reducing the consumed electrical energy of the control system as well.

کنترل ارتعاشات دو روتور جفک‌دانه‌ای توسعه جاذب مغناطیسی

Hamid Reza Heidari¹, Behnam Monjezi

Department of Mechanical Engineering, Malayer University, Malayer, Iran
¹P.O.B. 65719-61446, Malayer, Iran, hr.heidari@malayeru.ac.ir

ARTICLE information

Original Research Paper
Received 01 July 2016
Accepted 04 August 2016
Available Online 28 August 2016

Abstract

Unbalance mass and imperfect bearings are the main sources of vibration in rotor dynamic systems. One way to decrease and control a rotor vibration is the use of magnetic absorbers. The magnetic absorber is used to control the position of the rotor and reduce its vibration. In this study, by applying the dynamic absorber system force and reducing the consumed electrical energy of the control system as well.

Control vibration of imbalance Jeffcott rotor by magnetic absorber

Hamid Reza Heidari¹, Behnam Monjezi

Department of Mechanical Engineering, Malayer University, Malayer, Iran
¹P.O.B. 65719-61446, Malayer, Iran, hr.heidari@malayeru.ac.ir

ARTICLE information

Original Research Paper
Received 01 July 2016
Accepted 04 August 2016
Available Online 28 August 2016

Abstract

Unbalance mass and imperfect bearings are the main sources of vibration in rotor dynamic systems. One way to decrease and control a rotor vibration is the use of magnetic absorbers. The magnetic absorber is used to control the position of the rotor and reduce its vibration. In this study, by applying the dynamic absorber system force and reducing the consumed electrical energy of the control system as well.

کنترل ارتعاشات دو روتور جفک‌دانه‌ای توسعه جاذب مغناطیسی

Hamid Reza Heidari¹, Behnam Monjezi

Department of Mechanical Engineering, Malayer University, Malayer, Iran
¹P.O.B. 65719-61446, Malayer, Iran, hr.heidari@malayeru.ac.ir

ARTICLE information

Original Research Paper
Received 01 July 2016
Accepted 04 August 2016
Available Online 28 August 2016

Abstract

Unbalance mass and imperfect bearings are the main sources of vibration in rotor dynamic systems. One way to decrease and control a rotor vibration is the use of magnetic absorbers. The magnetic absorber is used to control the position of the rotor and reduce its vibration. In this study, by applying the dynamic absorber system force and reducing the consumed electrical energy of the control system as well.
پیش‌بینی مقدارهایی از فعالیت آنالوگ نیم‌معنایی با هم‌بستگی چشمندی در داده‌های بی‌پیش‌بینی، به مثال‌ها و حکایتی درمی‌آید، که در نهایت با کنترل بازدهی این فعالیت، می‌تواند به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود. با استفاده از مدل‌های مکانیک‌الکترونیکی با هم‌بستگی، می‌تواند با توجه به نتایج کنترل که در آن روزگار، با بستگی این سیستم به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود.

\[
M\ddot{x}_1 + C_1(x_1 - x_2) + K_1x_1 + K_2(x_1 - x_2) = m_n e_0^2 \cos \omega t = F_0 \cos \omega t
\]

\[
m_e \ddot{x}_2 + C_2(x_2 - x_1) + K_2(x_2 - x_1) = 0
\]

با بودن داده‌های پیش‌بینی سیستم، می‌تواند به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود. با استفاده از مدل‌های مکانیک‌الکترونیکی با هم‌بستگی، می‌تواند با توجه به نتایج کنترل که در آن روزگار، با بستگی این سیستم به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود.

کنترلی در این سیستم به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود. با استفاده از مدل‌های مکانیک‌الکترونیکی با هم‌بستگی، می‌تواند با توجه به نتایج کنترل که در آن روزگار، با بستگی این سیستم به شکل‌هایی که در آرزوی پیش‌بینی در این مدل استفاده می‌شود.

\[
\beta = \frac{m_n e_0^2}{m_e \omega^3}
\]

\[
\lambda = \frac{K_1}{K_2}
\]

\[
\mu = \frac{m_n}{m_e}
\]

\[
\zeta = \frac{2\sqrt{\mu\beta}}{\lambda}
\]

\[
M\ddot{x}_1 + C_1(x_1 - x_2) + K_1x_1 + K_2(x_1 - x_2) = m_n e_0^2 \cos \omega t = F_0 \cos \omega t
\]

\[
m_e \ddot{x}_2 + C_2(x_2 - x_1) + K_2(x_2 - x_1) = 0
\]

\[
\begin{aligned}
X_K &= \frac{X_{K,1}}{X_{K,2}} \\
&= \frac{X_{K,1}}{X_{K,2}} \\
&= \frac{(2\lambda \beta + \beta^2 - \lambda^2)^2}{(1 + \mu^2 - \lambda^2)^2(2\lambda \beta + \beta^2 - \lambda^2)^2 - \mu^2 \beta^2 \lambda^2}^2
\end{aligned}
\]

\[
\begin{aligned}
X_K &= \frac{X_{K,1}}{X_{K,2}} \\
&= \frac{X_{K,1}}{X_{K,2}} \\
&= \frac{(2\lambda \beta + \beta^2 - \lambda^2)^2}{(1 + \mu^2 - \lambda^2)^2(2\lambda \beta + \beta^2 - \lambda^2)^2 - \mu^2 \beta^2 \lambda^2}^2
\end{aligned}
\]
4-3 شیمی‌ای و مدل‌سازی جاذب دینامیکی توسط جاذب

در این بخش سیستم جاذب مفاهیمی، که از جاذب حترواید و اکسلر و گراندینگ، در اینجا به عنوان مثال در مورد سیستم دینامیکی یک روتور به شدت انتشار داده شده است. از آن جاذب دینامیکی که از بازتابی آزمایشگاهی سیستم دینامیکی، به استفاده از مقدار بیشتری از پاسخ‌گیری سیستم بیان شده است.

$$f_{S} = \frac{f_{\text{max}}}{8}$$

با استفاده از معادله (18) دامنه مناسب و منفی‌بندی جاذب دینامیکی در 16 طبقه به‌نوعی خودآمیخته شده که در رابطه (0) آزمایشگاهی جاذب دینامیکی به‌عنوان یکی از سیستم‌های برای دیمکیی انتخاب می‌شود.

$$f_{\pm} = f_{0} \pm \left(\frac{2n - 1}{2} \right) f_{s}$$

در نهایت در این بخش، معادله (19) به‌عنوان معادله جاذب دینامیکی که به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است. از آن جاذب دینامیکی و دیمکیی ناشناخته است. به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است.

4-4 معادلات حاکم بر جاذب مفاهیمی

در شکل 2 نمایی از جاذب مفاهیمی نشان داده شده است. از آن جاذب دینامیکی به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است. به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است.

$$\beta_{\text{opt}} = \frac{1}{1 + \mu}$$

$$\zeta_{\text{opt}} = \frac{3 \mu}{8(1 + \mu)}$$

در نهایت در این بخش، معادله (20) به‌عنوان معادله جاذب دینامیکی که به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است. به‌عنوان یکی از سیستم‌های برای دیمکیی، نشان داده شده است.
شکل 7 7 مدار عادلی با سیستم دیسپوزیتیون اکتیو و سیستم دیسپوزیتیون فلکسیون های جذب مغناطیسی

شکل 5 دامنه نیروی وارد شده از طرف سیستم جذب به رطوبت در دو سیستم A و B

شکل 6 استاتور و روتور جاذب مغناطیسی [19]

شکل 8 دامنه ولتاژ سیستم کنترل کننده جاذب مغناطیسی در سیستم های A و B و B1 و B2
5- بورسی مدل آزمایشگاهی سیستم جذب منفی

سیستم جذب منفی در جهت جلوگیری از افزایش نیروی در نیروگاه در دوران جذب منفی می‌باشد. به همین دلیل و از منظر عملکرد سیستم جذب منفی مشابهی به آن نیروی به جامدیکه برخوردار نیروی جذب منفی می‌باشد.

در جدول ۱ مقادیر پارامترهای روتور، سیستم جذب دینامیکی و سیستم کنترل‌کننده

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_x</td>
<td>N·S/m</td>
<td>3.4218</td>
</tr>
<tr>
<td>C_y</td>
<td>N·S/m</td>
<td>24.0252</td>
</tr>
<tr>
<td>C_z</td>
<td>N·S/m</td>
<td>4.2694</td>
</tr>
<tr>
<td>C_{xZ}</td>
<td>N·S/m</td>
<td>23.955</td>
</tr>
<tr>
<td>C_{yZ}</td>
<td>N·S/m</td>
<td>4.9</td>
</tr>
<tr>
<td>C_{zZ}</td>
<td>N·S/m</td>
<td>6.8085×10^{-6}</td>
</tr>
</tbody>
</table>

جدول ۱ مقادیر پارامترهای سیستم روتور، جذب دینامیکی و سیستم کنترل‌کننده

Fig. 9 Discontinuous voltage of the magnetic absorber respect the discontinuous force of the dynamic absorber

Fig. 10 View of the Jeffcott rotor with magnetic absorber system

مماکین مدرس، آیلی، ۱۳۹۵، دوره ۱۶، شماره ۸
astype اجرا بودن یک نوع جابجایی دیسکی، دارند.

همچنین منابعی که در حال اجرای جابجایی دیسکی بی‌نوی و با دو نسیم چرخش می‌باشد در معکورد

یافته‌های اینجایی که در حال اجرای دیسکی و با دو نسیم چرخش می‌باشد

خواهد داشت. همچنین به عنوان توجه به شکل 2 ملاحظه می‌کنیم که در مورد برای

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامنه و لازم نمی‌باشد.

کنترل کننده جابجایی معکورد نسبت به سیستم A نمی‌تواند به علت نسیم چرخش می‌باشد

نواحی فرکانس‌های طبیعی سیستم، ماکزیمم دامن...
كنظرية ارتعاش روتور جهاز تابليات بادينغتون توسط جذب مغناطيسي

