کنترل ارتعاشات روتور جنگنده نابالанс توسط جاذب مغناطیسی

عمارتضا حسینی\(^1\), بهنام منجزی\(^2\)

\(^1\) استاد، مهندسی مکانیک، دانشگاه مالار، مالیر
\(^2\) دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه مالیر
hr.heidari@malayeru.ac.ir - 65719-61446

اطلاعات مقاله
مقاله روزنامه‌ای
دریافت: 13 آذر 1395
پذیرش: 14 مرداد 1395
ازن سالی: 07مهر 1395

چکیده
متابع اصل ارتعاش در سیستم‌های روتور دیمانیک، جهت جریان نابالانس و خلاف‌الزمانی ساخت بافته‌ای‌ها می‌گردد که بر روی سیستم روتور می‌یابد. روشی که امروز به‌کار آمده آن کنترل ارتعاشات روتورها در صفحه‌های کاربردی است، استفاده از جذب‌های مغناطیسی است که به این سیستم روتور می‌یابد. جذب‌های مغناطیسی می‌توانند به‌عنوان روش‌های کنترل کرده و ارتعاشات را برای آن که کاهش یابد در محدوده‌های مغناطیسی با اعمال نیروی مغناطیسی محسوب شود. در اثر اعمال نیروی مغناطیسی، جاذب‌ها می‌توانند با هم تعامل داشته باشند و این تغییرات نیروی مغناطیسی و ارتعاشات را برای آن که کاهش یابد در محدوده‌های مغناطیسی با اعمال نیروی مغناطیسی محسوب شود.

در این مطالعه، تأثیر روتور دیمانیک جذب‌های مغناطیسی با نیروی مغناطیسی را ارزیابی می‌کنیم و بررسی می‌کنیم که این روش می‌تواند در دستگاه‌های اجرایی بیش از ۱۳ درصد از ارتعاشات روتور را کاهش دهد و برای هم‌ارتباط صفر داده و به همراه بازکردن ارتعاشات روتور را به طور مطلوبی کنترل کند.

کلمات کلیدی
کنترل ارتعاشات، جاذب‌های مغناطیسی، جاذب‌های مغناطیسی

Control vibration of imbalance Jeffcott rotor by magnetic absorber

Hamid Reza Heidari\(^1\), Behnam Monjezi

Department of Mechanical Engineering, Malayer University, Malayer, Iran
P.O.B. 65719-61446, Malayer, Iran, hr.heidari@malayeru.ac.ir

ARTICLE information
Original Research Paper
Received 01 July 2016
Accepted 04 August 2016
Available Online 28 August 2016

Keywords:
Rotor, Vibration Control, Magnetic Absorber, Dynamic Absorber, Discontinuous Force

ABSTRACT
Unbalance mass and imperfect bearings are the main sources of vibration in rotor dynamic systems. One way to decrease and control a rotor vibration is the use of magnetic absorbers. The magnetic absorber is used to control the position of the rotor and reduce its vibration. In this study, by applying the dynamic absorber system force and creating two new natural frequencies, the magnetic absorber brings the system out of the resonance. Moreover, in order to decrease the vibration amplitude, two different types of dynamic absorbers are designed in which they are checked by the magnetic absorber in a specific range of rotational frequency. In magnetic absorber controller system, the continuous force which is applied to the main system by mass absorber is restored in sixteen levels discontinuously. It is seen that the vibration amplitude is reduced 13% in the area of natural frequency in comparison to the magnetic absorber with discontinuous force. In this paper, two different mass ratios are considered for each one of the two absorber systems. It is observed that in the case of dynamic absorbers with higher mass ratio, rotor vibration amplitude and the maximum force amplitude of the dynamic absorber system decrease. This issue can increase the accuracy of magnetic absorber system in the renewal of the dynamic absorber system force and reduce consumed electrical energy of the control system as well.

کنترل ارتعاشات روتور جنگنده با استفاده از جاذب‌های مغناطیسی

Please cite this article using:
262

2-2 معادلات دینامیکی روتور به همراه جابج

در شکل 1 روتور جایدار دیسک نیانداشته و جابج معنی‌داری نشان داده شده است. معادلات (8) و (9) روابط دینامیکی حاکم بر سیستم را در راستای X بیان می‌کند.

\[
\begin{align*}
M \ddot{x}_1 + K_x x_1 + K_y x_y = m_u \omega^2 \cos \alpha t = F_0 \cos \alpha t \\
m \ddot{x}_2 + C \dot{x}_2 + k_x (x_1 - x_2) = 0
\end{align*}
\]

(8) (9)

با استفاده از دامنه پایان سیستم اصلی، معادله (10) حاصل می‌شود.

\[
\begin{align*}
\frac{X_k}{m_u \omega^2} &= \frac{X_k}{F_0} = \frac{X_1}{X_{st}}
\end{align*}
\]

(10)

3- بررسی پاسخ فرکانسی روتور به همراه جابج‌های دینامیکی

در شکل 2 نمونه‌های پاسخ فرکانسی روتور به همراه سیستم‌های جابج‌دار در راستای X بیان می‌کند.
شکل 4 پایه فرکانسی روتور ب همراه جاذبه دینامیکی نو اول و دوم
معادلات (13) و (14) مقدار بهینه پارامترهای سیستم جاذب نو دوم را می‌کند

\[\beta_{opt} = \frac{1}{1 - \mu} \] \hspace{1cm} (13)

\[\xi_{opt} = \frac{3\mu}{8(1 - 0.5\mu)} \] \hspace{1cm} (14)

شکل 2 نمای بالای روتور ب همراه سیستم جاذب نو اول

شکل 3 نمای بالای روتور ب همراه سیستم جاذب نو دوم

شکل 4 بهبود سیستم جاذب دینامیکی توسط جاذب

4- شیمیایی و مدل‌سازی جاذب دینامیکی توسط جاذب

در این بخش سیستم جاذب منغستیزی جایزه‌گر جاذب جرم و فر و مربوط به شده است به منظور مخلوط‌بندی منفی منگستیزی مناسب با نوع سیستم جاذب دینامیکی از روابط (15) و (16) استفاده شده است. برای سیستم جاذب دینامیکی نوول معادله خروجی جاذب عبارت است از:

\[C_{x,opt}(x_2 - x_1) + k_{x,opt}(x_2 - x_1) = -m_x \ddot{x}_2 = f_{abs} \] \hspace{1cm} (15)

\[k_{x,opt}(x_2 - x_1) - C_{x,opt}(x_2 - x_1) = f_{abs} \] \hspace{1cm} (16)

در شکل 5 دانه‌ی نیرویی که از طرف جاذب به روتور اعمال می‌شود برای دو سیر B و A. نشان داده شده است. با توجه به نمودارهای شکل 5 مکانیزم تغییر دانه نیروی به سیر B و A پدیده‌ای آمد و مقدار ضریب نیرو با استفاده از معادلات (17) محاسبه خواهد شد.

\[f_x = f_{max} \frac{\beta}{8} \] \hspace{1cm} (17)

با استفاده از معادلات (18) دانه‌ی منفی و منفی نیروی جاذب دینامیکی در 16 شرکت بارزی‌های جاذب که در این نیروی جاذب 0 نیروی مناسب با جریان بایاس را سیستم کنترل جاذب دینامیکی می‌باشد.

\[f_{s,n} = f_0 \pm \frac{2(n-1)f_s}{2}, n = 1, \ldots, 8 \] \hspace{1cm} (18)

4-1- معادلات حاکم بر جاذب منغستیزی

در شکل 6 نامی از جاذب منغستیزی نشان داده است نیروی مناسب به روتور که نشان می‌دهد از سیستم قرار گرفته و دو مقدار سیستم محاسبه می‌شود.

\[\beta_{opt} = \frac{1}{1 + \mu} \] \hspace{1cm} (11)

\[\xi_{opt} = \frac{3\mu}{8(1 + \mu)} \] \hspace{1cm} (12)
شیب‌های سیستم کنترل جاذب مغناطیسی

در شکل 8 دامنه تغییرات ولتاژ سیستم کنترل جاذب مغناطیسی نشان داده شده است. با سیستم A و B_1, B_2, در نقاط مختلف اختلاف ولتیژ نسبت به هم دارد و با توجه به انواع مکانیسم ولتاژ مناسب به مغناطیسیولوژی به معادلات (17) و (18), انرژی و انرژی در مدار سیستم کنترل جاذب مغناطیسی خواهد شد. در حالی که در یک و ولتاژ بالا در نمایندگی سیستم کنترل کننده، در حالی که کنترل جاذبی‌های دینامیکی با نسبت جنبش ناکنترلی مغناطیسی سیستم، در نواحی فکری‌های طبیعی، کنترل می‌شود. ΔV_{peak} مناسب ولتاژ بالا سیستم نسبت به سیستم B_1 به اندازه B_2 و ولتاژ بالا سیستم B_2 و ولتاژ بالا سیستم B_1 که خواهد شد است و حد بالای سیستم A, قرار گرفته است در B_1 ولتاژ بالا سیستم در B_2 با اندازه های کافی داده شده است که کنترل نیروی جاذب مغناطیسی، که مناسب به بالاترین ولتاژ این سیستم است. در این جنبش بالا و با توجه به این کفالت ولتاژ، توأم مصرفی سیستم کنترل کننده در این سیستم، نسبت به سیستم B_1 و B_2.

امپانس سیستم لوله‌کشی 16 سطح نیروی بسته آمد به معادله (18), در معادله (21), جریان $\text{اجرا} 8$ کنترل کننده آب‌بندی می‌شود و با $\text{اجرا} 22$.
5 یکی از مدل‌های سیستم جذب مناسب، یک سیستم دیتابوردی است که در این سیستم به همراه سیستم شیپیسیس، سیستم جذب مناسبی است که به‌عنوان سیستم کنترل کننده جذب مناسبی در آن مورد استفاده قرار می‌گیرد. در این سیستم سیستم جذب مناسبی به‌عنوان سیستم کنترل کننده جذب مناسبی استفاده می‌شود و به‌عنوان سیستم شیپیسیس، سیستم جذب مناسبی است که به‌عنوان سیستم کنترل کننده جذب مناسبی استفاده می‌شود.

جدول 1: مقادیر پارامترهای سیستم روتر، جذب دینامیکی و سیستم کنترل کننده

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳.۴۲۱۸</td>
<td>N⋅s/m</td>
<td>C_{x(1,μ=0.1)}</td>
</tr>
<tr>
<td>۲۴.۰۲۵۲</td>
<td>N⋅s/m</td>
<td>C_{x(1,μ=0.5)}</td>
</tr>
<tr>
<td>۴.۲۶۹۴</td>
<td>N⋅s/m</td>
<td>C_{x(2,μ=0)}</td>
</tr>
<tr>
<td>۲۳.۹۵۵</td>
<td>N⋅s/m</td>
<td>C_{x(z,μ=0.28)}</td>
</tr>
<tr>
<td>۴.۹</td>
<td>N</td>
<td>G</td>
</tr>
<tr>
<td>۶.۸۰۸۵×۱۰^{-۶} (wb⋅m)/(A⋅T)</td>
<td></td>
<td>K_r</td>
</tr>
<tr>
<td>۳۱۴۸۴.۲۸</td>
<td>N/m</td>
<td>k_e</td>
</tr>
<tr>
<td>۲۶۰۲</td>
<td>N/m</td>
<td>k_f</td>
</tr>
<tr>
<td>۶۹۹۶.۵</td>
<td>N/m</td>
<td>k_y</td>
</tr>
<tr>
<td>۳۴۹۷.۵۸۸</td>
<td>N/m</td>
<td>k_{x(2,μ=0)}</td>
</tr>
<tr>
<td>۱۲۴۲۷</td>
<td>N/m</td>
<td>k_{x(z,μ=0.28)}</td>
</tr>
<tr>
<td>۱۷۰۰</td>
<td>N/A</td>
<td>k_t</td>
</tr>
<tr>
<td>۰.۰۰۶۸</td>
<td>kg</td>
<td>L_c</td>
</tr>
<tr>
<td>۰.۳۳</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>۲۲۰</td>
<td>turn</td>
<td>N</td>
</tr>
<tr>
<td>۲۳</td>
<td>mm</td>
<td>r_d</td>
</tr>
<tr>
<td>۱۱</td>
<td></td>
<td>R_C</td>
</tr>
<tr>
<td>۰.۲۵</td>
<td></td>
<td>R_f</td>
</tr>
<tr>
<td>۱</td>
<td>mm</td>
<td>S_0</td>
</tr>
<tr>
<td>۰.۷</td>
<td>V</td>
<td>V_p</td>
</tr>
<tr>
<td>۱۰.۷</td>
<td>V</td>
<td>V_{bias_A}</td>
</tr>
<tr>
<td>۱۰.۷</td>
<td>V</td>
<td>V_{bias_B}</td>
</tr>
<tr>
<td>۸.۹</td>
<td>V</td>
<td>V_{bias_B2}</td>
</tr>
</tbody>
</table>

شکل ۹: کنترل کننده جذب مناسبی بر حسب سیستم جذب دینامیکی

شکل ۱۰: نمای کلی از روتر جکتک به همراه سیستم جذب مناسبی
دیمانیکی کمتر می‌باشد که این موضوع منجر به آزادی دقیقه‌بندی سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

به حال نتیجه که در شکل 12 نماهای نمایشگر فرکانسی در حالی انتقال‌های جاذب و D و A و B و C نمایش داده شده است. که این موضوع داده شده است. الگوی انتقالی و می‌تواند از مصرف نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته

Fig. 12 Comparison experimental results and the dynamic absorber in two A and B paths

Fig. 11 A view of the controller system for the Jeffcott rotor

شکل 11 از سیستم کنکوکی ساخته شده برای روتور جفتک

عنوان یک اسپلیت‌داده دو کانال، به نواحی ارائه‌های روتور استفاده شده است. در سیستم نقشه‌های توپوگرافیک برای انتقال سیگنال کنکوکی، داده‌های میزان گریز که در پس از آغاز اثر تقیی، سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 12 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 13 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

Fig. 11 A view of the controller system for the Jeffcott rotor

شکل 11 از سیستم کنکوکی ساخته شده برای روتور جفتک

عنوان یک اسپلیت‌داده دو کانال، به نواحی ارائه‌های روتور استفاده شده است. در سیستم نقشه‌های توپوگرافیک برای انتقال سیگنال کنکوکی، داده‌های میزان گریز که در پس از آغاز اثر تقیی، سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 12 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 13 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 14 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 15 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 16 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 17 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 18 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 19 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 20 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 21 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 22 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 23 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 24 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 25 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.

شکل 26 نماهای انتقال نری آن‌ها در سیستم‌ها و حمایت کننده از موفقیت اکثریت کنکوکی‌ها شده و همچنین کاهش مصرف نری آن‌ها. سیستم کنکوکی کندنگ بیشتر در داده شده و خواهش می‌داشته.
از دیگر مزایای بارز‌ترین جاذب دینامیکی توسعه جاذب مغناطیسی می‌باشد که با کاهش وزن سیستم به علت نهایت جرم جاذب احتمال نموده‌شود. برای این سیستم جاذب مغناطیسی، باید دو نسیم جاذبی یکدیگر و میراگر را به صورت جداگانه نصب می‌کنیم. باید این سیستم دو جاذبی که هیلیون با توجه به اینکه به اینکه در سیستم توپیرون‌های آن، دیگر نیروی کنترل جاذبی مغناطیسی تنها در گرما و در کنار این نسبت می‌باشد.

عکس بدون نوشته

(به تدریج بهبود می‌یابد)

1) C. J. Ji, N. Zhang, Suppression of the primary resonance vibrations of a

2) R. Tiwari, A. Chougale, Identification of bearing dynamic parameters and

3) A.C. Wroblewski, J.T. Sawicki, A.H. Pesch, Rotor model updating and

4) F. J. Lin, S. Y. Chen, M. S. Huang, Adaptive complementary sliding-mode

5) A. S. Das, J. K. Dutt, K. Ray, Active vibration control of unbalanced flexible

6) R. Tiwari, A. Chougale, Identification of bearing dynamic parameters and

8) C. J. Ji, N. Zhang, Suppression of the primary resonance vibrations of a

هر دو مقاله‌ها مربوط به مقاله‌هایی در مقاله‌های پژوهشی و نظری هستند که بهبود یافته‌اند.
control of the clamped beam with length and location optimized piezoelectric patches, Modares Mechanical Engineering, Vol. 15, No. 9, pp. 11-22, 2015.

