1. Howell RJ, Ramesh ON, Hodson HP, Harvey NW, Schulte V. High lift and aft loaded profiles for low pressure turbines. ASME Proceedings Heat Transfer Electric Power Industrial and Cogeneration. 2000;3:V003T01A066. [
Link] [
DOI:10.1115/2000-GT-0261]
2. Zou Z, Wang S, Liu H, Zhang W. Flow mechanisms in low-pressure turbines. In: Zou Z, Wang S, Liu H, Zhang W. Axial turbine aerodynamics for aero-engines. Singapore: Springer; 2018. pp. 143-257. [
Link] [
DOI:10.1007/978-981-10-5750-2_4]
3. Hodson HP, Howell RJ. The role of transition in high-lift low-pressure turbines for aeroengines. Progress in Aerospace Sciences. 2005;41(6):419-454. [
Link] [
DOI:10.1016/j.paerosci.2005.08.001]
4. Curtis EM, Hodson HP, Banieghbal MR, Denton JD, Howell RJ, Harvey NW. Development of blade profiles for low-pressure turbine applications. Journal of Turbomachinery. 1997;119(3):531-538. [
Link] [
DOI:10.1115/1.2841154]
5. González P, Ulizar I, Vázquez R, Hodson HP. Pressure and suction surfaces redesign for high-lift low-pressure turbines. Journal of Turbomachinery. 2002;124(2):161-166. [
Link] [
DOI:10.1115/1.1452747]
6. Cardamone P, Stadtmüller P, Fottner L. Numerical investigation of the wake-boundary layer interaction on a highly loaded LP turbine cascade blade. ASME Proceedings Turbo Expo Parts A and B. 2002;5:401-409. [
Link] [
DOI:10.1115/GT2002-30367]
7. Bigoni F, Vagnoli S, Arts T, Verstraete T. Detailed numerical characterization of the suction side laminar separation bubble for a high-lift low pressure turbine blade by means of RANS and LES. ASME Proceedings Turbomachinery. 2016;2D:V02DT44A015. [
Link] [
DOI:10.1115/GT2016-56653]
8. Blaim FF, Brachmanski RE, Niehuis R. Investigation of variated unsteady inflow boundary conditions on the transition behavior of a low pressure turbine cascade family. ASME Proceedings Turbomachinery. 2014;2C:V02CT38A023. [
Link] [
DOI:10.1115/GT2014-25891]
9. Schobeiri MT, Nikparto A. A comparative numerical study of aerodynamics and heat transfer on transitional flow around a highly loaded turbine blade with flow separation using RANS, URANS and LES. ASME Proceedings Heat Transfer. 2014;5C:V05CT17A001. [
Link] [
DOI:10.1115/GT2014-25828]
10. Nikparto A, Schobeiri MT. Combined numerical and experimental investigations of heat transfer of a highly loaded low-pressure turbine blade under periodic inlet flow condition. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy. 2018;232(7):769-784. [
Link] [
DOI:10.1177/0957650918758158]
11. Michelassi V, Chen LW, Pichler R, Sandberg RD. Compressible direct numerical simulation of low-pressure turbines-part II: Effect of inflow disturbances. Journal of Turbomachinery. 2015;137(7):071005. [
Link] [
DOI:10.1115/1.4029126]
12. Istvan MS, Yarusevych S. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil. Experiments in Fluids. 2018;59:52. [
Link] [
DOI:10.1007/s00348-018-2511-6]
13. Breuer M. Effect of inflow turbulence on an airfoil flow with laminar separation bubble: An LES study. Flow Turbulence and Combustion. 2018;101(2):433-456. [
Link] [
DOI:10.1007/s10494-017-9890-2]
14. Stadtmüller P, Fottner L. A test case for the numerical investigation of wake passing effects on a highly loaded LP turbine cascade blade. ASME Proceedings Aircraft Engine Marine Turbomachinery Microturbines and Small Turbomachinery. 2001;1:V001T03A015. [
Link] [
DOI:10.1115/2001-GT-0311]
15. Lengani D, Simoni D, Ubaldi M, Zunino P, Bertini F. Experimental investigation on the time-space evolution of a laminar separation bubble by POD and DMD. ASME Proceedings Turbomachinery. 2016;2B:V02BT38A049. [
Link] [
DOI:10.1115/GT2016-57581]
16. Mohammed-Taifour A, Weiss J. Unsteadiness in a large turbulent separation bubble. Journal of Fluid Mechanics. 2016;799:383-412. [
Link] [
DOI:10.1017/jfm.2016.377]
17. Haselbach F, Schiffer HP, Horsman M, Dressen S, Harvey N, Read S. The application of ultra high lift blading in the BR715 LP turbine. Journal of Turbomachinery. 2001;124(1):45-51. [
Link] [
DOI:10.1115/1.1415737]
18. Tropea C, Yarin A, Foss, JF, editors. Springer handbook of experimental fluid mechanics. Berlin/Heidelberg: Springer-Verlag; 2007. [
Link] [
DOI:10.1007/978-3-540-30299-5]
19. Coull JD, Thomas RL, Hodson HP. Velocity distributions for low pressure turbines. Journal of Turbomachinery. 2010;132(4):041006. [
Link] [
DOI:10.1115/1.3192149]
20. Menter FR, Langtry RB, Likki SR, Suzen YB, Huang PG, Völker S. A correlation-based transition model using local variables-part I: Model formulation. Journal of Turbomachinery. 2004;128(3):413-422. [
Link] [
DOI:10.1115/1.2184352]
21. Michelassi V, Wissink JG, Rodi W. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy. 2003;217(4):403-411. [
Link] [
DOI:10.1243/095765003322315469]
22. Lee D, Kawai S, Nonomura T, Anyoji M, Aono H, Oyama A, et al. Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers. Physics of Fluids. 2015;27(2):023602. [
Link] [
DOI:10.1063/1.4913500]
23. Zhang W, Zou Z, Qi L, Ye J, Wang L. Effects of freestream turbulence on separated boundary layer in a low-Re high-lift LP turbine blade. Computers & Fluids. 2015;109:1-12. [
Link] [
DOI:10.1016/j.compfluid.2014.12.014]
24. Marxen O, Henningson DS. The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. Journal of Fluid Mechanics. 2011;671:1-33. [
Link] [
DOI:10.1017/S0022112010004957]