Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 877-887 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoddami A, Mohammadi B. Finite Element Modeling of Multiple Solid Particles Erosion for Ti-6Al-4V Based on Johnson-Cook Plasticity and Failure Models. Modares Mechanical Engineering 2020; 20 (4) :877-887
URL: http://mme.modares.ac.ir/article-15-27110-en.html
1- Aerospace Engineering Department, Mechanical Engineering Faculty, Iran University of Science & Technology, Tehran, Iran
2- Mechanical Engineering Faculty, Iran University of Science and Technology, Tehran, Iran , Bijan_Mohammadi@iust.ac.ir
Abstract:   (2389 Views)
In the present study, solid particle erosion of Ti-6Al-4V alloy under multiple particles impact was investigated using finite element modeling. The erosive behavior of this ductile alloy has been simulated as a micro-scale impact model based on Johnson-Cook plasticity and failure equations. Erosive behavior is usually described by the volumetric erosion rate, which is introduced as the eroded volume ratio of alloy surfaces to the mass of the eroding particles. In this paper, the results of the finite element model were validated by comparing with results of typical erosion models. Then, effective factors on erosive behavior of alloy, such as impacting particles velocity, particles size, particles impact angle, temperature effects, and particles shape will be investigated. Results show that there is an exponential relation between particle velocity and erosion rate. Also, as particle size increases, the erosion rate increases at first and after a specific particle size, erosion rate presents a constant trend. The maximum erosion rate has been recorded at an impact angle of 40 degrees and a temperature of 473 Kelvin (average temperature of the middle stages of the compressor). It is shown that when spherical particles shape changes to the angular shape, the erosion rate increases more than four times.
Full-Text [PDF 734 kb]   (1622 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2018/11/13 | Accepted: 2019/08/20 | Published: 2020/04/17

1. Bousser E, Martinu L, Klemberg-Sapieha JE. Solid particle erosion mechanisms of protective coatings for aerospace applications. Surface and Coatings Technology. 2014;257:165-181. [Link] [DOI:10.1016/j.surfcoat.2014.08.037]
2. Silveira E, Atxaga G, Irisarri AM. Failure analysis of a set of compressor blades. Engineering Failure Analysis.;15(6):666-674. [Link] [DOI:10.1016/j.engfailanal.2007.10.002]
3. Farahani HK, Ketabchi M, Zangeneh Sh. Determination of Johnson-Cook plasticity model parameters for Inconel718. Journal of Materials Engineering and Performance. 2017;26(11):5284-5293. [Link] [DOI:10.1007/s11665-017-2990-2]
4. ElTobgy MS, Ng E, Elbestawi MA. Finite element modeling of erosive wear. International Journal of Machine Tools and Manufacture. 2005;45(11):1337-1346. [Link] [DOI:10.1016/j.ijmachtools.2005.01.007]
5. Finnie I. Erosion of surfaces by solid particles Oberflächenerosion durch feste teilchen. Wear. 1960;3(2):87-103. [Link] [DOI:10.1016/0043-1648(60)90055-7]
6. Bitter JGA. A study of erosion phenomena part I. Wear. 1963;6(1):5-21. [Link] [DOI:10.1016/0043-1648(63)90003-6]
7. Hutchings IM, Winter RE. Particle erosion of ductile metals: A mechanism of material removal. Wear. 1974;27(1):121-128. [Link] [DOI:10.1016/0043-1648(74)90091-X]
8. Bousser E, Martinu L, Klemberg-Sapieha JE. Solid particle erosion mechanisms of protrctive coating for aerospace applications. Surface and Coatings Technology. 2014;257:165-181. [Link] [DOI:10.1016/j.surfcoat.2014.08.037]
9. Wang YF, Yang ZG. Finite element model of erosive wear on ductile and brittle materials. Wear. 2008;265(5-6):871-878. [Link] [DOI:10.1016/j.wear.2008.01.014]
10. Woytowitz PJ, Richman RH. Solid mechanics modeling of erosion damage. In: Mc Dowell, editor. Applications of continuum damage mechanics to fatigue and fracture. West Conshohocken: ASTM International. pp:186-199. [Link] [DOI:10.1520/STP11884S]
11. Aquaro D, Fontani E. Erosion of ductile and brittle materials. Meccanica. 2001;36(6):651-661. [Link] [DOI:10.1023/A:1016396719711]
12. Rajahram SS. Erosion - corrosion mechanisms of stainless steel UNS S31603 [Dissertation]. Southampton: University of Southampton; 2010. [Link]
13. Verspui MA, De With G, Corbijn A, Slikkerveer PJ. Simulation model for the erosion of brittle materials. Wear. 1999;233-235:436-443. [Link] [DOI:10.1016/S0043-1648(99)00180-5]
14. Wellman RG, Nicholls JR. A Monte Carlo model for predicting the erosion rate of EB PVD TBCs. Wear. 2004;256(9-10):889-899. [Link] [DOI:10.1016/j.wear.2003.09.001]
15. Bielawski M, Beres W. FE modelling of surface stresses in erosion-resistant coatings under single particle impact. Wear. 2007;262(1-2):167-175. [Link] [DOI:10.1016/j.wear.2006.04.009]
16. Evstifeev A, Kazarinov N, Petrov Y, Witek L, Bednarz A. Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept. Engineering Failure Analysis. 2018;87:15-21. [Link] [DOI:10.1016/j.engfailanal.2018.01.006]
17. Elalem K, Li DY. Dynamical simulation of an abrasive wear process. Journal of Computer-Aided Materials Design. 1999;6(2-3):185-193. [Link] [DOI:10.1023/A:1008701903799]
18. Griffin D, Daadbin A, Datta S. The development of a three-dimensional finite element model for solid particle erosion on an alumina scale/MA956 substrate. Wear. 2004;256(9-10):900-906. [Link] [DOI:10.1016/j.wear.2003.05.003]
19. Giampaolo T. Gas turbine handbook: principles and practice. 5th Edition. Lilburn:Fairmont Press; 2013. [Link]
20. Yunlian Q, Ju D, Quan H, Liying Z. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Materials Science and Engineering: A. 2000;280(1):177-181. [Link] [DOI:10.1016/S0921-5093(99)00662-0]
21. Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal MH, Wilthan B, et al. Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. International Journal of Thermophysics. 2006;27(2):507-529. [Link] [DOI:10.1007/PL00021868]
22. Karpat Y. Temperature dependent flow softening of titanium alloy Ti6Al4V: An investigation using finite element simulation of machining. Journal of Materials Processing Technology. 2011;211(4):737-749. [Link] [DOI:10.1016/j.jmatprotec.2010.12.008]
23. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [Link] [DOI:10.1016/0013-7944(85)90052-9]
24. Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N. Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Materials Science and Engineering: A. 2015;640:200-209. [Link] [DOI:10.1016/j.msea.2015.05.073]
25. Jutras M. Improvement of the characterisation method of the Johnson-Cook Model [Dissertation]. Quebec: Universite Laval; 2008. [Link]
26. Wang X, Shi J. Validation of Johnson-Cook plasticity and damage model using impact experiment. International Journal of Impact Engineering. 2013;60:67-75. [Link] [DOI:10.1016/j.ijimpeng.2013.04.010]
27. Meng HC, Ludema KC. Wear models and predictive equations: Their form and content. Wear. 1995;181-183:443-457. [Link] [DOI:10.1016/0043-1648(95)90158-2]
28. Bitter JGA. A study of erosion phenomena: Part II. Wear. 1963;6(3):169-190. [Link] [DOI:10.1016/0043-1648(63)90073-5]
29. Hashish M. An improved model of erosion by solid particle impact. In: Seventh International Conference on Erosion by Liquid and Solid Impact; 1987 Sep 7-10; Cambridge, England: ELSI Conference; 1987. [Link]
30. Sundararajan G, Shewmon PG. A new model for the erosion of metals at normal incidence. Wear. 1983;84(2):237-258. [Link] [DOI:10.1016/0043-1648(83)90266-1]
31. Yerramareddy S, Bahadur S. Effect of operational variables, microstructure and mechanical properties on the erosion of Ti-6Al-4V. Wear. 1991;142(2):253-263. [Link] [DOI:10.1016/0043-1648(91)90168-T]
32. Shewmon PG. Particle size threshold in the erosion of metals. Wear. 1981;68(2):253-258. [Link] [DOI:10.1016/0043-1648(81)90094-6]
33. Schobeiri MT. Gas turbine design, components and system design integration. London: Springer; 2017. [Link] [DOI:10.1007/978-3-319-58378-5]
34. Smith EO, Neely AJ, Palfrey-Sneddon H. The impact of gas turbine compressor rotor bow on aircraft operations. The Aeronautical Journal. 2017;121(1246)1808-1832. [Link] [DOI:10.1017/aer.2017.117]
35. Cheng B, Chou K. A design-of-experiments approach to study thermal property effects on melt pool geometry in powder-based EBAM. In: ASME 2013 International Mechanical Engineering Congress and Exposition; 2013 Nov 15-21; San Diego, California, USA: American Society of Mechanical Engineers; 2013. p. V02AT02A017.
36. Hutchings IM. Tribology: friction and wear of engineering materials. UK: Edward Arnold; 1992. [DOI:10.1016/0261-3069(92)90241-9]
37. Stachowiak GW. Particle angularity and its relationship to abrasive and erosive wear. Wear. 2000 Jul 31;241(2):214-219. [DOI:10.1016/S0043-1648(00)00378-1]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.