The effect of laminate layers and follower force on optimum flutter speed of composite wing

Mohammad Reza Fallah, Mojtaba Farrokh*, Saied Irani

Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran
* P.O. Box 16765-3381, Tehran, Iran, farrokh@kntu.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 16 April 2016
Accepted 20 May 2016
Available Online 22 June 2016

Keywords: Aeronautics Flutter Composite wing Optimization Genetic algorithm

ABSTRACT
In this article the composite wing aeroelastic instability speed is optimized by genetic algorithm relative to fiber angle for different layers and follower forces. Aircraft wing is modeled as a beam with two degrees of freedom, which is a cantilever, with thrust as a follower force and mass of the engine. For structural modeling of composite wing the layer theory has been used and unsteady flow assuming subsonic and incompressible flow was used for aerodynamic model in the time domain. Using the assumed mode the wing dynamic equations of the motion were derived by Lagrange equations. Linear flutter speed according to the eigenvalues of the motion equations was calculated. The process of flutter speed calculation has been converted to computer code in which the number of layers, angle of fibers in each layer, the mass of the engine, and the thrust are input variables and the flutter speed is its output. Using Genetic Algorithm, optimum flutter speed was obtained by changing the angle of fibers. Finally, the impact of the number of layers, the mass of the engine, and thrust on optimum flutter speed has been investigated.

Please cite this article using:
شکل ۱ نحوه اتصال موتور به بال [13]

شکل ۲ نمای جلوی بال [13]

شکل ۳ موقعیت بال قبل و بعد از تغییر شکل‌های استاتیک [17]

شکل ۴ وضعیت بال قبل و بعد از تغییر شکل‌های استاتیک [17]

یکی از فرضیات عمده این رویت این است که جرین سیال نیتروسیدپایدار
بویان و بال در دو جهت از صفحه تقارن تغییر می‌یابد. به‌طور مثال باید به
نیتروسیدپایدار ماهیتی در راه آمده را به‌طور مناسب بگیرد و جریان
به صورت به‌طوری است، ضمیناً از این نکته باید صرف نظر شده و رابطه
همه جوکر در نظر گرفته شده است در شکل ۱ و شکل 2. همچنین شکل ۳ به
دوره صورت شکل‌ها نشان داده شده است.

شکل ۴ نشانه است از فرضیات عمده این رویت آن است که جریان سیال
نیتروسیدپایدار
بویان و بال در دو جهت از صفحه تقارن تغییر می‌یابد. به‌طور مثال باید به
نیتروسیدپایدار ماهیتی در راه آمده را به‌طور مناسب بگیرد و جریان
به صورت به‌طوری است، ضمیناً از این نکته باید صرف نظر شده و رابطه
همه جوکر در نظر گرفته شده است در شکل ۱ و شکل ۲. همچنین شکل ۳ به
دوره صورت شکل‌ها نشان داده شده است.

شکل ۱ نحوه اتصال موتور به بال [13]

شکل ۲ نمای جلوی بال [13]

شکل ۳ موقعیت بال قبل و بعد از تغییر شکل‌های استاتیک [17]

شکل ۴ وضعیت بال قبل و بعد از تغییر شکل‌های استاتیک [17]
دبیارده‌ی یک در راستای θ در نسبت به شکل اگر از ترم‌های غیرنظر مقدار نظر شود، بدبیارده‌ی یک مقدار نظر به نسبت به شکل بالابار به $\frac{1}{\theta}$ و $\frac{1}{x}$ خواهد بود.

حل اگر بدبیارده‌ی (θ) بسته به میزان ارتباط بین مختصات قبل و بعد از تغییر شکل به صورت $\frac{1}{\theta}$ خواهد بود:

$$i = i + w_k$$

$$j = j + \theta_k$$

$$k = -\theta_j + \theta_k$$

حال با جایگزینی روابط آنها در رابطه (5) در رابطه (6) بردار نسبت به مقدار $\frac{1}{\theta}$ می‌شود.

$$T = -\frac{1}{2} \int_0^1 \sum M_i (\dot{R}_i, \dot{R}_i) \delta (x - x_i) dV$$

با جایگزینی رابطه (5) در رابطه (6) دزیر جنبشی ناشی از جرم می‌شود.

$$T = \sum M_i (\dot{R}_i, \dot{R}_i) \delta (x - x_i) dV$$

برای بدست آوردن معادلات سیستم به صورت گاز اثربخش استفاده استفاده شده است که برای بال در دو درجه آزادی به صورت رابطه (8) می‌شود:

$$\frac{d}{dt} \frac{\partial \delta}{\partial \theta_i} - \frac{\partial \delta}{\partial \dot{\theta}_i} \frac{\partial \theta_i}{\partial x} = Q_h$$

$$d\beta$$

که در این رابطه T به طرف مناسب δ به صورت δ به صورت رابطه (10) می‌شود.

$$V = \frac{1}{2} (G_a \beta^2 + 2H x^2 + 2P(x - x_h) x h^2)$$

و برای دزیر میزان δ به صورت رابطه (11) می‌شود:

$$D = \frac{1}{2} \int_0^1 (C_0 a^2 + C_0^2) d\delta$$

در این رابطه β به $\frac{1}{2} \int_0^1 (m \beta^2 + 2mea \beta + \frac{1}{2} \int_0^1 a^2 \beta^2) dx$ (9) می‌شود.

$$\beta = \frac{1}{2} \int_0^1 (m \beta^2 + 2mea \beta + \frac{1}{2} \int_0^1 a^2 \beta^2) dx$$

در این رابطه β به $\frac{1}{2} \int_0^1 A \beta^2 + 2mea \beta + \frac{1}{2} \int_0^1 a^2 \beta^2$ خواهد بود: δ به صورت رابطه (12) می‌شود.

$$\delta W = \sum_0^1 \left(-LS_h + M \delta a \right)$$

در این رابطه δ به $\frac{1}{2} \int_0^1 \left(m \beta^2 + 2mea \beta + \frac{1}{2} \int_0^1 a^2 \beta^2 \right) dx$ (13) می‌شود.
پیشانی تعیین کننده زیاد باشند بدون حضور نیروهای آدروپدینامیکی، بالا نیکت نیاپایدار گردید \(10.5\) در چند مسیر برای تعیین نیاپایدار کننده جریان صفر است.

4- مدل سازی بال

با مورد بررسی یک ورق مستطیلی است مشخصات فیزیکی بال کامپیوتری سطح مقطع در جدول ۲ آمده است.

Fig. 4 Flutter speed computation flowchart

![Fig. 4 Flutter speed computation flowchart](image)

** Flutter speed computation flowchart **

Get the design variables including number of laminates and fiber angles

Read the properties of the composite material and the wing geometric specifications

Compute the constants \(A_1 \) to \(A_{12} \) Compute the \(E_1, G_{11}, \) and \(K \)

Compute dimensionless parameters according to Eq. (20)

Assignment of the initial velocity

Compute the coefficients \(C_9 \) to \(C_9 \), and \(D_9 \) to \(D_9 \)

Construction of the coefficient matrix of the motion equation according to Eqs. (21) and (22)

Calculation of the eigenvalues of the coefficient matrix

<table>
<thead>
<tr>
<th>Increase the velocity</th>
<th>Re. part (\geq 0) and</th>
<th>Im. part (> 0)</th>
<th>Yes</th>
<th>flutter speed(=v)</th>
</tr>
</thead>
</table>

نامه‌های برای شکل (۱۲) می‌باشد و در جدول ۲ آمده است:

\[E_I = b \left(\frac{D_{12}}{D_{11}} \right) \] \((23) \)

\[G_I = 4b \left(\frac{D_{16}}{D_{15}} \right) \] \((23) \)

\[K = 2b \left(\frac{D_{26} - D_{16}D_{12}}{D_{15}} \right) \] \((23) \)

برای محاسبه \(E_I \) از رابطه (۴) استفاده گردیده است.

\[D_{ij} = \frac{1}{3} \sum_{k=1}^{\text{num}} (\bar{q}_j) \cdot (h_i^l - h_k^l) \] \((24) \)

1- مدل نیرو و ممان‌های آدروپدینامیکی غیردالم و پیشنهاد

معادلات استفاده شده برای نیرو برآ و گشات آدروپدینامیک در جزییات زیر به صورت روابط (۲۵) و (۲۶) می‌باشد:

\[dC_9(\tau) = \pi \left(\tau - \alpha \frac{a_9}{a_9} + a^+ \right) \]

\[+ 2\pi \int_0^\tau \phi \left(\frac{1}{2} - a_9 \right) a^+ \left(\frac{1}{2} - a_9 \right) \right) d\tau \] \((25) \)

\[dC_9(\tau) = \pi \left(\frac{1}{2} - a_9 \right) a^+ \left(\frac{1}{2} - a_9 \right) \right) d\tau \] \((26) \)

که در روابط (۲۵) و (۲۶) \(\phi (\tau) \) ناب و اکثر می‌باشد گرایش هب توجه به تردید جوئر \(\psi (\tau) \) در دامنه (۱۸) \(\psi (\tau) = 0 \) \((26) \)

\[\phi (\tau) = 1 - \psi (e^{-\tau} - \psi (e^{-\tau}) \] \((27) \)

\[\psi (\tau) = 0.165, \psi_2 = 0.335, \psi_1 = 0.455, \psi_2 = 0.3 \] \((27) \)

در روابط (۲۵) و (۲۶) \(\delta \) بهبود و \(\psi \) برچسب مقطع بال می‌باشد.

2- محاسبه سرعت فلاتر

برای محاسبه سرعت فلک بال موی‌ها ابتدا با استفاده از مقدار فرضی (رابطه (۱۸)) می‌باشد به

gرم ماتریس تبدیل نمود قسمت حقيقة مقادیر ویژه ماتریس ضرایب این

ماده اسپلیت هم اکبیری مدل و قسمت هوی‌مند آن فرکانس کاهش یافته می‌باشد. سرعت نیاپایدار مربوط به زمان می‌باشد که اکبیری مدل از مقادیر مفتی به مقادیر مفتی کاهش یافته منتسب است، اکنون می‌باشد با بررسی نتایج دریچه سرعت جریان و محاسبه مقادیر مابین مدل و فرقانس کاهش یافته به فاصله انحراف \(\sigma \) و مقادیر فلک بال معادله \(f \) محاسبه سرعت فلتر را تعیین می‌نماید. جدول ۲ نیز محاسبه سرعت فلتر در

این مقاله در "شکل ۴" نشان داده است لازم به ذکر اینکه در صورت

اضافه نشان‌های یکنوازه نگه داشته نیست، بلکه این مدل نیز

عملی برای نیاپایداری می‌باشد این این معنی است که اکر مقدار نیروی

\(5\) Jones
سرعت مهقراتی برای ریسین به جویان بهینه افراد یافته است نتیجه به این دلیل است که افرادی که به روش‌های مختلفی کمک می‌کنند به درمان چهارم ناگهانی خود، یک تغییر داده شده است.

6- منابع طراحی

همان‌طور که بالا ذکر گردید در این مقاله از کوپی مزینگ برای یک پوست

7- نتایج

برای ایجاد جریان مختلف از هر جرم موتور، تعداد لایه‌ها و تولید لایه

<table>
<thead>
<tr>
<th>جدول 1: مشخصات ساختاری و هندسی بال</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر</td>
</tr>
<tr>
<td>طول بال</td>
</tr>
<tr>
<td>ارتفاع</td>
</tr>
<tr>
<td>جرم</td>
</tr>
<tr>
<td>طول</td>
</tr>
<tr>
<td>جریان هوا</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول 2: مشخصات ماده کامپوزیتی و سطح محلول بال</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر</td>
</tr>
<tr>
<td>E1</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td>G12</td>
</tr>
<tr>
<td>v12</td>
</tr>
<tr>
<td>پهنای نیل بال</td>
</tr>
<tr>
<td>ضخامت</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول 3: اعتبارسنجی سرعت الفلام بال</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت الفلام بال</td>
</tr>
<tr>
<td>سرعت الفلام بال</td>
</tr>
<tr>
<td>سرعت الفلام بال</td>
</tr>
</tbody>
</table>

1 Selection
2 Crossover
3 Mutation
Fig. 5 Variation of frequency and damping vs air speed for Goland wing

- **a)** Frequency vs air speed plot
- **b)** Damping vs air speed plot

Fig. 6 Flutter speed optimization process of wing without engine mass and thrust for the various layers

Fig. 7 Optimum flutter speed of wing without thrust for the various layers
سیستم‌های سازاری سرعت فلار تا ۱۰ لایه برای نیروی پیش‌بان مختلف

Fig. 11 Flutter speed optimization process of 10 layer wing for different thrust

شکل ۱۱ روند پیش‌بانی سرعت فلار بالا ۱۰ لایه برای نیروی پیش‌بان مختلف

Fig. 12 Flutter speed optimization process of \(p=0 \) thrust for different layers

شکل ۱۲ روند پیش‌بانی سرعت فلار تحت نیروی پیش‌بان \(p=0 \) برای لایه‌های مختلف

Fig. 13 Flutter speed optimization process of \(p=1 \) thrust for different layers

شکل ۱۳ روند پیش‌بانی سرعت فلار تحت نیروی پیش‌بان \(p=1 \) برای لایه‌های مختلف

Fig. 8 Flutter speed optimization process of 2 layer wing for different thrust

شکل ۸ روند پیش‌بانی سرعت فلار بالا ۲ لایه برای نیروی پیش‌بان مختلف

Fig. 9 Flutter speed optimization process of 4 layer wing for different thrust

شکل ۹ روند پیش‌بانی سرعت فلار بالا ۴ لایه برای نیروی پیش‌بان مختلف

Fig. 10 Flutter speed optimization process of 8 layer wing for different thrust

شکل ۱۰ روند پیش‌بانی سرعت فلار بالا ۸ لایه برای نیروی پیش‌بان مختلف
Fig. 14 Flutter speed optimization process of $p=2$ thrust for different layers

Fig. 15 Flutter speed optimization process of $p=3$ thrust for different layers

Fig. 16 Flutter speed optimization process of $p=4$ thrust for different layers

Fig. 17 Optimum flutter speed for different layers

Fig. 18 Optimum flutter speed for different thrust forces
جهانی برای بلوک بندی سیر از طریق مدل پیش‌ترین وضعیت مکانیکی بیش از شش ماهه با اندازه‌گیری به‌کمک از كيفية‌ی جریان و توده‌ای جریانات این مقاله به دانستن و نحوه مسئولیت سیر فلزات انجام شده، نشان می‌دهد.

Table 4 Results for wing without engine mass and thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5</td>
<td>[2.7]</td>
<td>4.22</td>
<td>[0.003]</td>
</tr>
<tr>
<td>31.1</td>
<td>[-6.5]</td>
<td>4.22</td>
<td>[0.001,0.04]</td>
</tr>
<tr>
<td>45.7</td>
<td>[-45.5,46.6,29]</td>
<td>4.9</td>
<td>[.53,0.23,0.06]</td>
</tr>
<tr>
<td>46.4</td>
<td>[-45.45,45.44,39]</td>
<td>4.44</td>
<td>[-0.085,0.5,0.505,0.03]</td>
</tr>
</tbody>
</table>

Table 5 Results for wing with engine mass and zero thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6</td>
<td>[-2.8]</td>
<td>5.4</td>
<td>[0.19]</td>
</tr>
<tr>
<td>32.3</td>
<td>[-5.16]</td>
<td>15.01</td>
<td>[-1.75,0.024]</td>
</tr>
<tr>
<td>42.75</td>
<td>[37.55,22,11.5]</td>
<td>27.27</td>
<td>[.177,0.127,0.57,0.52]</td>
</tr>
<tr>
<td>42.7</td>
<td>[31.7,51.35,25,1.5]</td>
<td>5.01</td>
<td>[0.012,0.12,0.048,0.62,0.47]</td>
</tr>
</tbody>
</table>

Table 6 Results for wing with mass and p=1 thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6</td>
<td>[-2.8]</td>
<td>4.3</td>
<td>[0.0056]</td>
</tr>
<tr>
<td>40.2</td>
<td>[-6.29]</td>
<td>4.74</td>
<td>[-0.487,0.485]</td>
</tr>
<tr>
<td>44.2</td>
<td>[-9.27,5.24,24]</td>
<td>4.24</td>
<td>[0.024,0.16,0.1,0.7]</td>
</tr>
<tr>
<td>44</td>
<td>[-16,6.2,3,2.2,2]</td>
<td>4.23</td>
<td>[0.053,0.15,0.05,0.03,0.34]</td>
</tr>
</tbody>
</table>

Table 7 Results for wing with engine mass and p=2 thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>[-4.3]</td>
<td>4</td>
<td>[-0.5]</td>
</tr>
<tr>
<td>45.7</td>
<td>[-9.27]</td>
<td>3.6</td>
<td>[0.08,0.6]</td>
</tr>
<tr>
<td>53.1</td>
<td>[-16.7,2.25,21]</td>
<td>3.53</td>
<td>[0.05,0.08,2,0.3,0.96]</td>
</tr>
<tr>
<td>52.8</td>
<td>[-18,3,19,6,1,3,0,3]</td>
<td>5.15</td>
<td>[-2.16,0.1,1,1,3,1,4]</td>
</tr>
</tbody>
</table>

Table 8 Results for wing with engine mass and p=3 thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>[-4]</td>
<td>0</td>
<td>[-0.5]</td>
</tr>
<tr>
<td>30.3</td>
<td>[-11.6,7.8]</td>
<td>0</td>
<td>[1.2,0.5]</td>
</tr>
<tr>
<td>30.5</td>
<td>[-9.3,15.8,3,24]</td>
<td>0</td>
<td>[-0.26,1,0.9,0.8,0.52]</td>
</tr>
<tr>
<td>30.3</td>
<td>[-16,3,7.5,0,5,5,7]</td>
<td>0</td>
<td>[0.03,0.08,1,0.8,0.05,0.26]</td>
</tr>
</tbody>
</table>

Table 9 Results for wing with engine mass and p=4 thrust

<table>
<thead>
<tr>
<th>سرعت فلزات (m/s)</th>
<th>زاویه هنگام بار</th>
<th>سرعت هنگام بار</th>
<th>تعداد لایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
<td>[-8]</td>
<td>0</td>
<td>[2.3]</td>
</tr>
<tr>
<td>19.2</td>
<td>[-18.5,7]</td>
<td>0</td>
<td>[1.15,1.5]</td>
</tr>
<tr>
<td>19.2</td>
<td>[-19.5,14,10,8]</td>
<td>0</td>
<td>[0.56,1,0.66,0.52,0.9]</td>
</tr>
<tr>
<td>19.3</td>
<td>[-17,18.6,16,2,5,7,15.7]</td>
<td>0</td>
<td>[-0.35,0,9,2.5,2,2,0,03]</td>
</tr>
</tbody>
</table>

جدول 4 نتایج برای بال بدون جرم موتور و توربیو پیشتران

جدول 5 نتایج برای بال با جرم موتور و توربیو پیشتران صفر

جدول 6 نتایج برای بال با جرم مشترک و توربیو پیشتران p=1

جدول 7 نتایج برای بال با جرم مشترک و توربیو پیشتران p=2

جدول 8 نتایج برای بال با جرم مشترک و توربیو پیشتران p=3

جدول 9 نتایج برای بال با جرم مشترک و توربیو پیشتران p=4
بی‌توجهی‌ها
تعداد لایه‌ها

۱۰ - مراجع

