Numerical and Experimental Investigation of a Projectile Water Entry Problem and Study of Velocity Effect on Time and Depth of Pinch-off

Mohammad Reza Erfanian¹, Mohammad Moghiman²

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
¹P.O.B. 91775-1111 Mashhad, Iran, Moghiman@um.ac.ir
²mme.modares.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 09 October 2014
Accepted 17 November 2014
Available Online 20 December 2014

Keywords:
Water entry
Coupled Eulerian – Lagrangian
Projectile
Pinch-off time

ABSTRACT

In this study, the water entry problem of a spherical-nose projectile is investigated numerically and experimentally. For the numerical simulations, a three dimensional model of the projectile with six-degree-of-freedom rigid body motion is considered. A Coupled Eulerian-Lagrangian (CEL) method is employed for modeling fluid-structure interactions. Through Eulerian-Lagrangian contact, Eulerian material can interact with Lagrangian elements. Also, an equation of state model describes the hydrodynamic behavior of the material. The numerical results are well compared with the available experimental results of a falling sphere in the literature and also the experiments of the current study. The experiments are performed for a spherical-nose projectile in a water tank equipped with a launching system and a high speed camera. The simulation results such as air cavity shape and the projectile trajectory are compared with the presented experimental data. The good agreement observed between the numerical results and those of the experiments, revealed the accuracy and capability of the proposed numerical algorithm. Also, it has been shown that the pinch-off time is a weak function of impact velocity, however, increasing velocity leads to a linear increase in depth of pinch-off.

Please cite this article using:
اتجاه وآزمایش‌های سر و اردشیری بر پایه کاربرد دو مرحله آب و دمای مایع می‌باشد.

باسی اندازه‌گیری‌ها دنباله‌داری را می‌کند، دوباره بر روی اولین منطقه آب و دمای مایع می‌باشد.

پایه شرایط در حین آن‌ها، اندازه‌گیری‌های دنباله‌داری، دنباله‌داری را می‌کند.

3-Hydrophobic
4-Pinch-off
5-SPH
6-Abaqus 7-Remeshing

آزمایش‌هایی در این‌جا دو مرحله آب و دمای مایع می‌باشد.

کوچکترین میزان دمای مایع می‌باشد.

1-Water splash
2-Added mass
شده با نتایج آزمایش‌های م[t]مری مربوط به سقوط کره و هم با داده‌های
تجاری در چندین مورد از باره‌ها انتشار داشته است در این اجا (آرمان)
از یک برابرسه فضای موردی که به یک سیستم بسته به باشگاه
اب تکامل می‌شود، استفاده شده است. شکل حیات و سیستم حیاتی باید
کمکی عضو یکی از انجام تسویه دوستی با سرعت بهبود آنها است.

2- مدل‌های حاکم و روش حل معادلات
در روش‌های آنالیز لغزشی، هر گاه یک نسبت به ماده در جای خود نتایج به یافت می‌شود.
و برای یافتن کلیه به‌صورت به‌ساده می‌باشد. به‌طور کلی ماده‌ای
اقتصادی لغزشی نیازمند همگرایی از دو ماده به‌طور مشابه‌های مستقیم
شروع می‌شود، منطقه‌ای بر محدوده ماده است.

شروع‌های اولیه برای روش‌های الگوریتمی، جدید در جای خود
در روش‌های اولیه مورد استفاده قرار می‌گیرند. در تعداد جزئی از موارد
進め، این روش همچنان در جفت معیارهای کاهش نمایی جداگانه می‌باشد،
در راه حل‌ها مسئله مقدار معیارهای

3- مدل‌های فیزیکی بیشتر
برای انجام استادی برخود رپید به صورت به‌ساده یک معیار افزایش
و راه‌حل‌ها است. این نتایج به‌طور کلی به‌طور مناسب می‌باشد.

مقدار خیلی می‌تواند در مدل‌های صورت داده‌های ترکیب
از مدل‌ها و اولیه‌های مدل‌های پیوسته.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}}
\]

که به و رابطه بین سرعت خشک شوک، \(\varepsilon_S\) و \(\eta\) سرعت مخرب، را

\[
U_0 = C_0 + s U_p
\]

با فرضیه فوک، فرم هوبنیکویی خشک شوک و \(\varepsilon_S\) و \(\eta\) طبق رابطه (10) نوشته می‌شود.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}}
\]

داستان های جهت نتایج به‌طور مناسب می‌باشد.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}}
\]

که به و رابطه بین سرعت خشک شوک، \(\varepsilon_S\) و \(\eta\) سرعت مخرب، را

\[
U_0 = C_0 + s U_p
\]

با فرضیه فوک، فرم هوبنیکویی خشک شوک و \(\varepsilon_S\) و \(\eta\) طبق رابطه (10) نوشته می‌شود.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}}
\]

داستان های جهت نتایج به‌طور مناسب می‌باشد.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}}
\]

که به و رابطه بین سرعت خشک شوک، \(\varepsilon_S\) و \(\eta\) سرعت مخرب، را

\[
U_0 = C_0 + s U_p
\]

با فرضیه فوک، فرم هوبنیکویی خشک شوک و \(\varepsilon_S\) و \(\eta\) طبق رابطه (10) نوشته می‌شود.

\[
p = \frac{\rho \varepsilon_S \eta}{1 - \frac{(\varepsilon_S \eta)^2}{(1 - \varepsilon_S \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}} + \frac{\rho \varepsilon \eta}{1 - \frac{(\varepsilon \eta)^2}{(1 - \varepsilon \eta^2)}}
\]

داستان های جهت نتایج به‌طور مناسب می‌باشد.
همکاران [5] در شکل گیری و جذابیت حباب نشان داده شد است. نتایج عدی یک کسر حجمی 0.05 نشان داده است. وقتی که با سطح از آزاد ab بروز می‌کند حبابی از یک بخش کرک تکیه می‌گردد. این بحث شامل دو مرحله است. در این مرحله حباب افتاده و در نهایت استخبانی نموده و رود کرک به آب می‌آید. می‌تواند یک بحث محوری شکل می‌گیرد. این حباب به کمک مولفه‌ای محوری شکل می‌گیرد.

در این مقاله مسئله ورود به آب یک برابری با سطح آزاد ab از استفاده از حل عدیدی و آزمایشگاهی مورد بررسی قرار گرفته است. برای حل عدیدی از روش کوکل اولتری- لارگرند استفاده شده است و دقت عدیدی در مقایسه با داده‌های نیروی آزمایشگاهی در شکل 2 نشان داده می‌گردد که برای یک برابری انجام شده است. اشکال گردیده است در شکل 4 تجربه شده است. نتایج از محاسبات شیار حرکتی و شیار محیط حامل منفی بوط به ورود به آب کرک نشان داده است. از مون در ناحیه اوپری وجوه به حدی که در این حضور فضایی و نسبت باسی همکاری می‌کند. با استفاده از نتایج حل عدیدی مکان جذابیت حباب به حدود 59 سانتی‌متر و در زمان 63 سانتی‌متر اتفاق افتد است.

درک و همکاری با مطالعه حداکثر از بروز می‌کند ab، راه‌های ای تحلیل برای محاسبه عمق و زمان جذابیت حباب از دیدگاه [24] در این انجام می‌گیرد. جهت عکس برداری مناسب، جدار محوطه آزمایش، شیفنا انتخاب شده است. تمامی محیطها با چسب مصرف آبیده است به منظور بررسی نتایج آزمایش، از تصادف عناصر برداری سرعت برخورد بر زمان و عمق جذابیت حباب.

جدول 1

<table>
<thead>
<tr>
<th>ρ_0</th>
<th>S</th>
<th>η_0</th>
<th>ρ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^5</td>
<td>10^{-3}</td>
<td>$0/100$</td>
<td>390</td>
</tr>
</tbody>
</table>

1. Collapse

شکل 2 نمونه آزمایشگاهی برابری

شکل 1 مدل آزمایشگاهی برابری

شکل 3 نمای حائل حبابی شیار حرکتی و شیار محیطی دانه محاسباتی

در شکل 4 محاسبه از نتایج عدیدی و آزمایشگاهی متوقع به آریستو و
همه نتایج مناسبی با تاثیر آزمایشگاهی دارند.

هنگامی که در این پژوهش از اصل اصله بود، در 6 اثره گردیده است راه درمانی شامل دایره نیم‌گرو و به دنبال استفاده شکل جدیدی که بر روی داده که چهار بال کشیده شده با سیلیکون قرار گرفته است، 3
برنامه 232 گرم، طول کلی آن 400 میلی‌متر و قطر آن در قسمت استفاده 26 میلی‌متر می‌باشد. همچنین فاصله مرکز گرم برای مدت 11.5 میلی‌متر است.

d†d۱۸۹۲۹۲۰۱۱۲۰۱۳۷۰۷۰\(t\) (ms)

* مکعب با ابعاد 60*60*60 سانتی‌متر انتخاب شده است.

زمان (ثانیه)

راه‌حل تحلیلی امکان حداکثر نتایج مربوط به زمان جدایی حیوان، این زمان
وایسته به علت الکتریکی و تنها به تغییر‌های انرژی می‌کند با استفاده از
راه‌حل تحلیلی آزمایش شده توسط دوکلاکس و همکاران، در زمان جدایی حیوان
65 سانتی‌متر و زمان آن در حداکثر 58 میلی‌ثانیه محاسبه می‌شود. می‌توان
با توجه به آن‌که در حاشیه 48 میلی‌ثانیه محاسبه می‌شود. می‌توان
آزمایشگاهی دارد. به نظر می‌رسد از جریان‌های چرخشی در آن ناپیوسته، البته نتایج آزمایشگاهی نوعی
نیاز دارد و با توجه به آن‌که در روش حل
عده و اعمالات اولیر استفاده شده است، آمکان آن‌ها در حل عددی

برای شکل‌بندی محیط حاصل از سه‌لایه‌های محاسباتی کاملاً منظم و
سازمان‌های مرتبه استفاده شده است مدل‌سازی شکل برای تحلیلی مختلی که در موارد مشابه محور اسفاده قرار گرفته و گسترش انجام شده است.
همانطور که در شکل 8 ماه‌ها مدفوع با رزیدر کردن از این شکل به کمتر
از 6 و 6 سانتی‌متر نتایج تغییر سپار نتایج داشته‌باشد. تعداد نتایج
شکل محاسباتی در این حالت در حداکثر 4 میلی‌ثانیه می‌باشد. همچنین باید
دانه محاسباتی نیز به قدری برکت انتخاب شده که با افزایش آنها
نتایج تغییر چندانی نداشتند. در نتیجه دانه محاسباتی به‌صورت یک

* شکل 4 مقادیر شکل‌گیری حساب بین نتایج عددی (سنتوم سنتی) و نتایج آزمایشگاهی آستریو و همکاران [5] (سنتوم سنتی).

شکل 5 تغییرات عمیق کره بر حسب زمان

شکل 6 مدل پرتاب نسبتی با دانه‌های نیم‌گرو
محاسبه موقعیت مکانی پرتابه در زمان مشخص تخمین زده شده است. انحراف نتایج عددهای تجربی پس از زمان ۴۰ میلی‌ثانیه، به ترتیب...

\[
\begin{array}{c|c|c|c|c|c|c|c}
\text{زمان (ثانیه)} & 0 & 0.03 & 0.05 & 0.08 & 0.10 & 0.13 & 0.15 \\
\text{انحراف (میلی‌متر)} & -0.01 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{array}
\]

شکل ۸ مقایسه شیکوه‌های با ادزه مختلف

شکل ۷ نمایی پرتابه

شکل ۶ مقایسه بین نتایج عددهای را در شکل‌های جنگله‌ها با نتایج حاصل از کار آزمایشگاهی. شناسایی هم‌دستی نتایج عددهای برای کرک‌بندی این داده‌ها است. زمان صفر لحظه‌ای است که در این زمان صفحه پرتابه صفحه آزاد آب را حس می‌کند و منحنی‌های گراف‌ها سرعت ۶ متر بر ثانیه است. همان‌طور که در این شکل دیده می‌شود، با فرآیند پرتابه به آب جابجایی می‌گردد، سپس مشابه با آنه به مورد ورود کرده به آب کاملاً شده، تنها زمان ۴۰ میلی‌ثانیه از لحظه پیاده‌سازی آب آبی است. حساب هوایی تکراری شده مناسب است و شدت در دوی به دلیل مقاومت نیروهای فشاری هیدرولوژیکی منتفی گردد و به سمت جدایی و تکرار به دوی و به دوی سه‌مین جابجایی و دوی در نهایت مثلاً منجر گردد. احتمال لحظه وقوع جابجایی حساب در زمان ۵۴ میلی‌ثانیه به خوبی توسط حل عددهای پیش‌بینی شده است.

شکل ۵ مقایسه نتایج حالت عددهای و آزمایشگاهی در صفحه ورود به آب پرتابه در شکل ۱۰ منحنی جابجایی آفتاب و عمده پرتابه بر حسب زمان با استفاده از حل عددهای تجربی ارزیابی اراثه و با کدکی قابل‌توجه شده است. حساب هوایی که در این شکل بیشتر می‌شود، نتایج عددهای تکراری و برای تکرار آزمایشگاهی داده شده است.

شکل ۴ مشخصی از پرتابه در تجزیه‌گری در آزمایشگاهی برای محاسبه موقعیت پرتابه در هر لحظه از زمان در جهات آفتاب و عمده (مقع پرتابه) معمولاً با هر یک از کیفیت تصویر و سرعت فکس برای دوربین‌های دیدگاه، به دست‌آوردهای مناسب، دقیقه برای دو حرکت و پیش‌بینی مناسب، تصادف با وضعیت آن اثرات گردد و منحنی‌های مربوط به عکس‌های داده‌های تجربی با انجام مطالعات مربوط به محاسبه انحراف معیار استفاده می‌شود. منحنی‌های سطحی به اطلاع از ردیابی موقعیت پرتابه و تکرار خطا در حدود ۴ تا ۷ درصد برای مناسب موقعیت مکانی پرتابه در زمان مشخص تخمین زده شده است.
دلیل اثرات ناشی از تنزیک شدن پرتوپن به انتحال دانه محاسباتی در حل عدید است. البته با تغییر استحکم و قوه جدایی حساب (54 میلیتایم) و مورد نظر، هر سرعت برخورد با زمان می‌تواند با تغییر شتاب‌های محاسباتی انجام شود. در همین راستا این تغییرات در حل، سرعت برخورد و قوه جدایی حساب به معادله 11 مبنای، مشاهده می‌گردد.

همچنین نتایج حاکی از این است که در برخورد نشان داده شده است. همان گونه که دیده می‌شود، زمان جدایی حساب تقریباً نیاز به سرعت برخورد زمان و همکارانش (25) این نتیجه را تایید کرده‌اند.

در این پژوهش از روی کویل اولیه، نسبت باری شیمیایی عدید سرعت برخورد یک پرتوپن سعی می‌باشد تا سطح آب در شرایط شدید درجه آزادی استفاده شده است. برای انتخاب حل عدید، یک بستر آزمایشگاهی شامل یک نانوآپ، نیترلیک و یک دورین جهت تهیه گردید، نتایج حاکی از شکل بی‌گیری حساب هوا، لحظه جدایی حساب و جابجایی پرتوپن با هدایت آزمایشگاهی مقاومت کریستالی و دقت بالا و توانایی روش عدید به کار گرفته شده است. مشاهده شد که لحظه و قوه جدایی حساب نتایج ضعیفی از سرعت برخورد با سطح آب می‌باشد. به چند هکت این عدید برخورد در لحظه جدایی حساب یک تابع خطی از سرعت برخورد است.

![شکل 12: نتایج حاکی از این بررسی]

![شکل 13: نتایج حاکی از این بررسی]

![شکل 14: نتایج حاکی از این بررسی]

![شکل 15: نتایج حاکی از این بررسی]

