Volume 20, Issue 10 (October 2020)                   Modares Mechanical Engineering 2020, 20(10): 2433-2443 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili S, Veysi F, Paknezhad M. Numerical Study of the Effect of Inclination Angles and Geometric Parameters of Aluminum Metal Foam on Heat Transfer Free Convection with Thermal Non-Equilibrium Condition. Modares Mechanical Engineering 2020; 20 (10) :2433-2443
URL: http://mme.modares.ac.ir/article-15-28682-en.html
1- Mechanical Engineering Department, Engineering Faculty, Razi University, Kermanshah, Iran
2- Mechanical Engineering Department, Engineering Faculty, Razi University, Kermanshah, Iran , veysi@razi.ac.ir
Abstract:   (1835 Views)
In the present study, the effect of the inclination angle and geometric parameters of aluminum metal foam on heat transfer free convection is investigated numerically. Heat transfer and fluid flow in metal foam based on volume averaging theory and considering the thermal non-equilibrium condition for the energy equation, and the nonlinear Darcy-Brinkman-Forchheimer equation for the momentum equation is expressed in the porous region, microscopic equations in the pure fluid region and macroscopic equations in the porous region are solved. The finite element method has been used to solve numerical of momentum and energy equations in the porous region and pure fluid. In this study, influence of the inclination angle parameters of the metal foam heat sink, base temperature, and also geometric parameters of foam includes porosity, pore density, and foam height on the thermal performance of metal foam has been investigated. Numerical results show good agreement with the empirical results of others' works. Numerical results indicate that at the same temperature, the average Nusselt number of the metal foam heat sink in the horizontal position is 62.6% higher than the horizontal flat plate. Horizontal metal foam has the highest average Nusselt number compared to other angles; For metal foam with a pore density of 5ppi and a porosity of 0.92 in the horizontal position, the average Nusselt number is 22.3% higher than in the vertical position. Besides, in the upward horizontal position, the average Nusselt number is 29.5% higher than in the downward horizontal position.
Full-Text [PDF 1627 kb]   (2176 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/12/28 | Accepted: 2020/08/1 | Published: 2020/10/21

References
1. Taheri M. Analytical and numerical modeling of fluid flow and heat transfer through open-cell metal foam heat exchangers [dissertation]. Toronto: University of Toronto; 2015. [Link]
2. Phanikumar MS, Mahajan RL. Non-darcy natural convection in metal foams with open cells. International Journal of Heat and Mass Transfer. 2002;45(18):3781-3793. [Link] [DOI:10.1016/S0017-9310(02)00089-3]
3. Zhao CY, Lu TJ, Hodson HP. Natural convection in metal foams with open cells. International Journal of Heat and Mass Transfer. 2005;48(12):2452-2463. [Link] [DOI:10.1016/j.ijheatmasstransfer.2005.01.002]
4. Qu Z, Wang T, Tao W, Lu T. Experimental study of air natural convection on metallic foam-sintered plate. International Journal Heat and Fluid Flow. 2012;38:126-132. [Link] [DOI:10.1016/j.ijheatfluidflow.2012.08.005]
5. Billiet M, De Schampheleire S, Huisseune H, De Paepe M. Influence of orientation and radiative heat transfer on aluminum foam in buoyancy_induced convection. Materials. 2015;8(10):6792-6805. [Link] [DOI:10.3390/ma8105340]
6. De Schampheleire S, De Kerpel K, De Jaeger P, Huisseune H, Ameel B, De Paepe M. Buoyancy driven convection in open-cell metal foam using the volume averaging theory. Applied Thermal Engineering. 2015;79:225­233. [Link] [DOI:10.1016/j.applthermaleng.2015.01.019]
7. Barbieri M, Di Ilio G, Patanè F, Bella G. Experimental investigation on buoyancy-induced convection in aluminum metal foams. International Journal of Refrigeration.2017;76:385-393. [Link] [DOI:10.1016/j.ijrefrig.2016.12.019]
8. Buonomo B, Diana A, Manca O, Nardini. Local thermal non-equilibrium investigation on natural convection in horizontal channel heated from above and partially filled with aluminium foam. Energy Procedia. 2017;126:42-49. [Link] [DOI:10.1016/j.egypro.2017.08.055]
9. Bayomy AM, Saghir MZ, Yousefi T. Electronic cooling using water flow in aluminum metal foam heat sink: Experimental and numerical approach. International Journal of Thermal Sciences. 2016;109:182-200. [Link] [DOI:10.1016/j.ijthermalsci.2016.06.007]
10. Gangapatnam P, Kurian R, Venkateshan SP. Numerical simulation of heat transfer in metal foams. Heat Mass Transfer. 2017;54(2):553-562. [Link] [DOI:10.1007/s00231-017-2149-6]
11. Andreozzi A, Bianco N, Iasiello M, Naso V. Numerical study of metal foam heat sinks under uniform impinging flow. Journal of Physics Conference Series. 2017;796(1):012002. [Link] [DOI:10.1088/1742-6596/796/1/012002]
12. Kotresha B, Nagarajan G. Numerical simulations of fluid flow and heat transfer through aluminum and copper metal foam heat exchanger-a comparative study. Heat Transfer Enginiering. 2018;41(6-7):1-13. [Link] [DOI:10.1080/01457632.2018.1546969]
13. Huang Y, Sun Q, Yao F, Zhang C. Experimental study on the thermal performance of a finned metal foam heat sink with phase change material. Heat Transfer Enginiering. 2020:1-13. [Link] [DOI:10.1080/01457632.2020.1716482]
14. Qi C, Tang J, Ding Z, Yan Y, Guo L, Ma Y. Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. International Communications in Heat and Mass Transfer. 2019;109:104349. [Link] [DOI:10.1016/j.icheatmasstransfer.2019.104349]
15. Bayomy AM, Saghir Z. Thermal performance of finned aluminum heat sink filled with ERG aluminum foam: Experimental and numerical approach. International Journal of Energy Research. 2020;44(6):4411-4425. [Link] [DOI:10.1002/er.5217]
16. Whitaker S. Flow in porous media 1: A theoretical derivation of Darcy's law. Transport in Porous Media. 1986;1:3-25. [Link] [DOI:10.1007/BF01036523]
17. Dai Z, Nawaz K, Park YG, Bock J, Jacobi AM. Correcting and extending the boomsma-poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams. International Communications in Heat and Mass Transfer. 2010;37(6):575-580. [Link] [DOI:10.1016/j.icheatmasstransfer.2010.01.015]
18. Calmidi VV, Mahajan R. Forced convection in high porosity metal foams. Journal of Heat Transfer. 2000;122(3):557-565. [Link] [DOI:10.1115/1.1287793]
19. Nellis G, Klein S. Heat Transfer. Cambridge: Cambridge University Press; 2009. [Link] [DOI:10.1017/CBO9780511841606]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.