1. Karniadakis GE, Beskok A, Aluru N. Microflows and nanoflows: Fundamentals and Simulation. New York: Springer; 2005. [
Link]
2. Naraghi MN, Moallemi MK, Naraghi MHN, Kumar S. Experimental modeling of circular hydraulic jump by the impingement of a water column on a horizontal disk. Journal of Fluids Engineering. 1999;121(1):86-92. [
Link] [
DOI:10.1115/1.2822017]
3. Rao A, Arakeri JH. Wave structure in the radial film flow with a circular hydraulic jump. Experiments in Fluids. 2001;31(5):542-549. [
Link] [
DOI:10.1007/s003480100328]
4. Birkhoff G, Zarantonello EH. Jets, wakes and cavities. 1th Edition. Cambridge: Academic Press; 1957. [
Link]
5. Watson EJ. The radial spread of a liquid jet over a horizontal plane. Journal of Fluid Mechanics. 1964;20(3):481-499. [
Link] [
DOI:10.1017/S0022112064001367]
6. Stevens J, Webb BW. Local heat transfer coefficients under an axisymmetric, single-phase liquid jet. Journal of Heat Transfer. 1991;113(1):71-78. [
Link] [
DOI:10.1115/1.2910554]
7. Baonga JB, Louahlia-Gualous H, Imbert M. Experimental study of the hydrodynamic and heat transfer of free liquid jet impinging a flat circular heated disk. Applied Thermal Engineering. 2006;26(11-12):1125-1138. [
Link] [
DOI:10.1016/j.applthermaleng.2005.11.001]
8. Duchesne A, Lebon L, Limat L. Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection. Europhysics Letters. 2014;107(5):54002. [
Link] [
DOI:10.1209/0295-5075/107/54002]
9. Avedisian CT, Zhao Z. The circular hydraulic jump in low gravity. Proceeding of the Royal Society A Mathematical, Physical and Engineering Sciences. 2000;456(2001):2127-2151. [
Link] [
DOI:10.1098/rspa.2000.0606]
10. Gradeck M, Kouachi A, Dani A, Arnoult D, Borean JL. Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface. Experiment Thermal and Fluid Science. 2006;30(3):193-201. [
Link] [
DOI:10.1016/j.expthermflusci.2005.05.006]
11. Kate RP, Das PK, Chakraborty S. An experimental investigation on the interaction of hydraulic jumps formed by two normal impinging circular liquid jets. Journal of Fluid Mechanics. 2007;590:355-380. [
Link] [
DOI:10.1017/S0022112007008063]
12. Kate RP, Das PK, Chakraborty S. Investigation on non-circular hydraulic jumps formed due to obliquely impinging circular liquid jets. Experimental Thermal and Fluid Science. 2008;32(8):1429-1439. [
Link] [
DOI:10.1016/j.expthermflusci.2008.03.001]
13. Gumkowski S. Modeling and experimental investigation of the hydraulic jumps in liquid film formed by an impinging two-phase air-water jet. Heat Transfer Engineering. 2008;29(9):816-821. [
Link] [
DOI:10.1080/01457630802053876]
14. Mikielewicz J, Mikielewicz D. A simple dissipation model of circular hydraulic jump. International Journal of Heat and Mass Transfer. 2009;52(1-2):17-21. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2008.06.007]
15. Teamah MA, Ibrahim MK, Khairat Dawood MM, Aleem EA. Experimental investigation for hydrodynamic flow due to obliquely free circular water jet impinging on horizontal flat plate. European Journal of Scientific Research. 2012;83(1):60-75. [
Link]
16. Johnson M, Maynes D, Crockett J. Experimental characterization of hydraulic jump caused by jet impingement on micro-patterned surfaces exhibiting ribs and cavities. Experimental Thermal and Fluid Science. 2014;58:216-223. [
Link] [
DOI:10.1016/j.expthermflusci.2014.07.001]
17. Choo K, Kim SJ. The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement. Experimental Thermal and Fluid Science. 2016;72:12-17. [
Link] [
DOI:10.1016/j.expthermflusci.2015.10.033]
18. Friedrich BK, Ford TD, Glaspell AW, Choo K. Experimental study of the hydrodynamic and heat transfer of air-assistant circular water jet impinging a flat circular disk. International Journal of Heat and Mass Transfer. 2017;106:804-809. [
Link] [
DOI:10.1016/j.ijheatmasstransfer.2016.09.102]
19. Saberi A, Mahpeykar MR, Teymourtash AR. Experimental measurement of radius of circular hydraulic jumps: Effect of radius of convex target plate. Flow Measurement and Instrumentation. 2019;65:274-279. [
Link] [
DOI:10.1016/j.flowmeasinst.2019.01.011]
20. Teymouratsh AR, Mokhlesi M. Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps. Journal of Fluid Mechanics. 2015;762:344-360. [
Link] [
DOI:10.1017/jfm.2014.646]
21. Soukhtanlou E, Teymourtash AR, Mahpeykar MR. Proposal of experimental relations for determining the number of sides of polygonal hydraulic jumps. Modares Mechanical Engineering. 2018;18(1):273-280. [Persian] [
Link]
22. Bush JWM, Aristoff JM. The influence of surface tension on the circular hydraulic jump. Journal of Fluid Mechanics. 2003;489:229-238. [
Link] [
DOI:10.1017/S0022112003005159]
23. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics. 1992;100(2):335-354. [
Link] [
DOI:10.1016/0021-9991(92)90240-Y]